

 [image: Logo] [https://github.com/scalabli/quo]

	Version

	2023.x [https://quo.rtfd.io]

	Web

	Documentation📃 [https://quo.readthedocs.io/]

	Download

	Downloads [https://pypi.org/project/quo]

	Source

	Github [https://github.com/scalabli/quo]

Forever Scalable

Quo

Quo is a toolkit for writing Command-Line Interface(CLI) app
lications and a TUI (Text User Interface) framework for Python. Quo is making headway towards composing speedy and orderly CLI and TUI applications while forestalling any disappointments brought about by the failure to execute a python application.

Simple to code, easy to learn, and does not come with needless baggage.

Quo requires Python 3.8 or later.

Features

	[x] Support for ANSI, RGB and Hex color models

	[x] Support for tabular presentation of data

	[x] Intuitive progressbars

	[x] Code completions

	[x] Parsing and nesting of commands

	[x] Customizable Text User Interface (TUI) dialogs

	[x] Automatic help page generation

	[x] Syntax highlighting

	[x] Autosuggestions

	[x] Key Binders

Quo is simple If you know Python you can easily use Quo and it can integrate with just about anything.

Tutorials & Explanations

	Introduction
	Requirements

	Installation

	Quick Start

	Printing (and using) formatted text
	Formatted text

	echo
	Printing to Standard error using echo

	print

	Bars

	Console API
	Attributes

	Bell

	Encoding

	File Opening

	Launching Applications

	Launching Text Editors

	Pager

	Spin

	Terminal size

	Dialogs
	Message Box

	Input Box

	Confirm Box

	Choice Box

	Radiolist Box

	Check Box

	Styling of dialogs

	Styling reference sheet
	Example

	Parse
	How to name Optional Arguments
	The basics

	Short options

	Positional Arguments

	Combining Positional and Optional arguments

	Grouping conflicting optional arguments

	Progress bars 📊
	Simple progress bar

	Autohide progressbar

	Adding a title and label

	Adding a toolbar

	Spinner themes

	Multiple parallel tasks

	Nested progressbars

	Rainbow progress bar

	Adding a key binder

	Prompts
	App Prompts

	Input Validation
	Integer Validator

	Input Prompts using Prompt() class

	Multiline Input

	Hide Input
	Using function quo.prompt()

	Using class `quo.prompt.Prompt()

	Confirmation Prompts

	System prompt

	Suspend prompt

	Prompt bottom toolbar

	Right prompt(rprompt)

	Syntax highlighting

	Placeholder text
	Plain text placeholder

	Formatted text placeholder

	Colors
	Plain text prompt

	Formatted text prompt

	Styled prompt

	Coloring the prompt and the input

	Completion
	Auto suggestion

	Autocompletion

	Nested completion

	Complete while typing

	History
	MemoryHistory

	FileHistory

	Adding custom key bindings
	Conditional Key bindings

	Toggle visibility of input

	Mouse support

	Line wrapping

	Rule

	Table
	Printing tabular data

	Table headers

	Column Widths and Line Wrapping

	Widgets
	Frame

	Box

	Label

	TextField
	Other attributes

	Button

	Shadow

	Utilities
	Screen Clearing

	Getting Characters from Terminal(getchar)

	Exitting

	Waiting for Key Press(pause)

	Exception(Error) Handling
	Where are Errors Handled?

	Which Exceptions Exist?

	Text User Interface (Full screen Command-line applications)
	A simple application

	The layout
	container

	A layered layout architecture

	HSplit

	VSplit

	Key bindings
	Global key bindings

	Registering Key bindings

	Window

	Key binding 🗝️
	List of special keys

	Binding alt+something, option+something or meta+something

	Wildcards

	Attaching a Condition to key bindings

	ConditionalKeyBindings: Disabling a set of key bindings

	Merging key bindings

	Eager

	Asyncio coroutines

	Timeouts

	Recording macros

	Creating new Vi text objects and operators

Miscellaneous pages

	License📜

	Changelog

	Appendix

Donate🎁

In order to for us to maintain this project and grow our community of contributors.
Donate [https://ko-fi.com/scalabli]

Getting Help

Community

For discussions about the usage, development, and the future of quo, please join our Google community

	Community👨‍👩‍👦‍👦 [https://groups.google.com/g/scalabli]

Resources

Bug tracker

If you have any suggestions, bug reports, or annoyances please report them
to our issue tracker at
Bug tracker [https://github.com/scalabli/quo/issues/] or send an email to:

📥 scalabli@proton.me | scalabli@googlegroups.com

Introduction

Quo is a Python based toolkit for writing Command-Line Interface(CLI) applications. Quo is making headway towards composing speedy and orderly CLI applications while forestalling any disappointments brought about by the failure to execute a CLI API. Simple to code, easy to learn, and does not come with needless baggage.

Requirements

Quo works flawlessly with Linux, OSX and Windows.

Quo requires Python 3.8 or later

Installation

You can install Quo from PyPi with pip

pip install -U quo

Quick Start

from quo import echo

echo(f"Hello World!", fg="red", italic=True, bold=True)

This will print Hello World! plus a new line to the terminal. Unlike the builtin print function, echo [https://quo.readthedocs.io/en/latest/printing_text.html#echo]

function has improved support for handling formatted text.

Printing (and using) formatted text

Formatted text

There are several ways to display colors:

	By creating a quo.echo() function.

	By creating a quo.print() function.

An instance of any of these three kinds of objects is called “formated text”.

echo

quo.echo() prints a message plus a newline to the given file or stdout. On first sight, this looks like the print function, but it has improved support for handling Unicode, binary data and formatted text. It will emit newline by default, which cab be suppressed by passing :param:nl=False

» List of supported ANSI colors [https://quo.readthedocs.io/en/latest/appendix/echo-ansi-colors.html]

	Parameters
	
	text – the string to style with ansi or rgb color codes.

	fg – if provided this will become the foreground color.

	bg – if provided this will become the background color.

	bold – if provided this will enable or disable bold mode.

	dim – if provided this will enable or disable dim mode.

	nl - if provided this will print a new line.

	ul or underline – if provided this will enable or disable underline.

	italic - if provided this will print data in italic.

	blink – if provided this will enable or disable blinking.

	strike -if provided this will print a strikethrough text.

	hidden - if privided this will prevent the input from getting printed.

	reverse – if provided this will enable or disable inverse rendering (foreground becomes background and the other way round).

	reset – by default a reset-all code is added at the end of the string which means that styles do not carry over. This can be disabled to compose styles.

from quo import echo

echo("Hello, world!", nl=False)

from quo import echo

echo("This is bold", bold=True)
echo("This is italic", italic=True)

Colors from the ANSI palette

echo("This is red", fg="red")
echo("This is green", fg="green")

from quo import echo
echo("This is underlined", underline=True)

[image: _images/underlined.png]
from quo import echo

echo(b'\xe2\x98\x83')

Printing to Standard error using echo

You can easily print to standard error by passing :param:err=True

from quo import echo

echo('Hello World!', err=True)

print

Quo ships with a print() function that’s meant to be (as much as possible) compatible with the built-in print function, and quo.echo(). It also supports color and formatting just like quo.echo().
print() can be used to indicate that a string contains HTML-like formatting. It recognizes the basic tags for bold, italic and underline: , <i> and <u>.
Changed since v2022.3.5

On Linux systems, this will output VT100 escape sequences, while on Windows it will use Win32 API calls or VT100 sequences, depending on what is available.

	Parameters
	
	values - Any kind of printable object, or formatted string.

	end - String appended after the last value, default a newline.(the default is a new line).

	fmt bool - Default is False, if True, you will be able to utilize an instance of quo.text.FormattedText. Added on v2022.4

	color_depth - Instance of quo.color.ColorDepth . This specifies the number of bits used for each color component i.e: one_bit(2 colors black ad white), four_bit(ANSI 16 colors), eight_bit(256 colors) or twenty_four_bit(24 bit True color). The default color depth is eight_bit.

	sep - String inserted between values, default a space.

	style - quo.style.Style instance for the color scheme.

from quo import print

print('This is bold')
print('<i>This is italic</i>')
print('<u>This is underlined</u>')

	Colors from the ANSI palette.

from quo import print

print('<red>This is red</red>')
print('<green>This is green</green>')

» List of supported ANSI colors [https://quo.readthedocs.io/en/latest/appendix/print-ansi-colors.html]
Read more about styling.

	Named colors (256 color palette, or true color).

from quo import print

print('<skyblue>This is sky blue</skyblue>')

[image: _images/skyblue.png]

More examples

from quo import print
print('<seagreen>This is sea green</seagreen>')
print('<violet>This is violet</violet>')

» List of supported Named colors [https://quo.readthedocs.io/en/latest/appendix/print-named-colors.html]

Both foreground and background colors can also be specified setting the fg
and bg attributes of any Text tag:

from quo import print

print('<style fg="white" bg="green">White on green</style>')

[image: _images/white-on-green.png]

Note

» style tag in the example above can be anything i.e: <abc…

Underneath, all Text tags are mapped to classes from a stylesheet, so you can assign a style for a custom tag.

from quo import print
from quo.style import Style

style = Style.add({
 'aaa': 'fg:red',
 'bbb': 'fg:blue italic'
 })

print('<aaa>Hello</aaa> <bbb>world</bbb>!', style=style)

Note

This page is also useful if you’d like to learn how to use formatting
in other places, like in a prompt or a toolbar.

» Check out more examples here [https://github.com/scalabli/quo/tree/master/examples/print-text/]

Bars

The Bar can be used to draw a horizontal bar with an optional title, which is a good way of dividing your terminal output in to sections.
Added on v2023.3

	Parameters
	
	message Optional[(str)] – Message print on the terminal.

	align Optional[(str)] - Postion of the message to be printed. Default is center other options are left and right.

	fg Optional[(str)] - Foreground color to be applied.

	bg Optional[(str)] - Background color to be applied.

from quo.bar import Bar

bar = Bar("I am a bar")

bar.draw()

[image: _images/default.png]
from quo.bar import Bar

bar = Bar("I am a styled bar")

bar.draw(fg="blue", bg="yellow")

[image: _images/styled.png]
from quo.bar import Bar

bar = Bar("I am right aligned")

bar.draw(align="right")

[image: _images/right.png]

Console API

For complete control over terminal formatting, Quo offers a Console class. Most applications will require a single Console instance, so you may want to create one at the module level or as an attribute of your top-level object. For example, you could add a file called “console.py” to your project:

from quo.console import Console
console = Console()

Then you can import the console from anywhere in your project like this:

from my_file.console import console

Attributes

The console will auto-detect a number of properties required when rendering.

Bell

For making a beep sound multiple times

	Parameters
	instance (int) - The number of times to ring the bell

from quo.console import Console

console = Console()

console.bell(3)

Encoding

quo.console.Console.encoding will detect the default encoding of the Terminal (typically “utf-8”)

from quo.console import Console

console = Console()

console.encoding()

File Opening

The logic for opening files from the quo.types.File type is exposed through the quo.Console.openfile() function. It can intelligently open stdin/stdout as well as any other file.
Parameters

	filename (str) - The name of the file to open (or '-' for stdin/stdout).

	mode (str) - The mode in which to open the file.

	encoding Optional - The encoding to use.

	errors (str) - The error handling for this file.

	lazy (bool) - Can be flipped to true to open the file lazily.

	atomic (bool) -in atomic mode writes go into a temporary file and it’s moved on close.

from quo.console import Console

console = Console()

stdout = console.openfile('-', 'w')
test_file = console.openfile('test.txt', 'w')

If stdin or stdout are returned, the return value is wrapped in a special file where the context manager will prevent the closing of the file. This makes the handling of standard streams transparent and you can always use it like this:

from quo.console import Console

console = Console()

with console.openfile(filename, 'w') as f:
f.write('Hello World!\n')

Launching Applications

Quo supports launching applications through quo.Console.launch(). This
can be used to open the default application associated with a URL or filetype.

This can be used to launch web browsers or picture viewers, for instan
ce. In addition to this, it can also launch the file manager and automatically select the provided file.

	Parameters
	
	url (str) – URL or filename of the thing to launch.

	wait (bool) – Wait for the program to exit before returning. This only works if the launched program blocks. In particular, xdg- open on Linux does not block.

	locate Optional (bool) – if this is set to True then instead of launching the application associated with the URL it will attempt to launch a file manager with the file located. This might have weird effects if the URL does not point to the filesystem.

from quo.console import Console

console = Console()

console.launch("https://quo.rtfd.io/")

from quo.console import Console

console = Console()

console.launch("/home/downloads/file.txt", locate=True)

Launching Text Editors

Quo supports launching editors automatically through quo.Console.edit(). This is very useful for asking users for multi-line input. It will automatically open the user’s defined editor or fall back to sensible default. If the user closes the editor without saving, the return value will be None, otherwise the entered text.

	Parameters
	
	text (str) - The text to edit.

	editor Optional - The editor to use. Defaults to automatic detection.

	env (str) - The environment variables to forward to the editor.

	require_save (bool) - If this is true, then not saving in the editor will make the return value become None.

	extension (str) - The extension to tell the editor about. This defaults to .txt but changing this might change syntax highlighting.

	filename (str) - If provided it will edit this file instead of the provided text contents. It will not use a temporary file as an indirection in that case.

Note

For Windows: to simplify cross-platform usage, the newlines are automatically converted from POSIX to Windows and vice versa. As such, the message here will have \n as newline markers

from quo.console import Console

console = Console()

def get_commit_message():
 MARKER = '# Everything below is ignored\n'
 message = console.edit('\n\n' + MARKER)
 if message is not None:
 return message.split(MARKER, 1)[0].rstrip('\n')

Alternatively, the function can also be used to launch editors for files by a specific filename. In this case, the return value is always None.

from quo.console import Console

console = Console()
console.edit(filename='/etc/passwd')

Pager

quo.console.Console.pager() takes a text and shows it via an environment specific pager on stdout.
Added on v2022.4

	Parameters
	
	text - The text to page, or alternatively, a generator emitting the text to page.

	color - controls if the pager supports ANSI colors or not.

Spin

This creates a context manager that is used to display a spinner on stdout as long as the context has not exited.
Added on v2022.5

import time

from quo.console import Console

console = Console()

with console.spin():
 time.sleep(3)
 print("Hello, World")

Terminal size

Function quo.console.Console.size returns the current size of the terminal as tuple in the form (width, height) in columns and rows.

from quo.console import Console

console = Console()
console.size()

» Check out more examples here [https://github.com/scalabli/quo/tree/master/examples/console/]

Dialogs

Quo ships with a high level API for displaying dialog boxes [https://en.m.wikipedia.org/wiki/Dialog_box] to the user for informational purposes, or get input from the user.

All dialogs can be passed bg=False option to turn off the background. Added on v2022.4

Deprecated :meth:`.run` on v2022.3.2

Message Box

Use the MessageBox() function to display a
simple message box. For instance:

from quo.dialog import MessageBox

MessageBox(
 title='Message window',
 text='Do you want to continue?\nPress ENTER to quit.')

[image: _images/message.png]

Input Box

The InputBox() function can display an
input box. It will return the user input as a string.

from quo.dialog import InputBox
InputBox(
 title='PromptBox Shenanigans',
 text='What Country are you from?:')

[image: _images/input.png]
The multiline=True parameter can be passed to turn this into a multiline Input box

[image: _images/multiline.png]
The hide=True option can be passed to the InputBox() function to turn this into a password input box.

Confirm Box

The ConfirmBox() function displays a yes/no confirmation dialog. It will return a boolean according to the selection.

from quo.dialog import ConfirmBox

ConfirmBox(
 title='Yes/No example',
 text='Do you want to confirm?')

[image: images/dialog/confirm.png]

Choice Box

The ChoiceBox() function displays a dialog
with choices offered as buttons. Buttons are indicated as a list of tuples, each providing the label (first) and return value if clicked (second).

from quo.dialog import ChoiceBox

ChoiceBox(
 title='Button dialog example',
 text='Do you want to confirm?',
 buttons=[
 ('Yes', True),
 ('No', False),
 ('Maybe...', None)
])

[image: images/dialog/checkbox.png]

Radiolist Box

The RadiolistBox() function displays a dialog
with choices offered as a radio list. The values are provided as a list of tuples,
each providing the return value (first element) and the displayed value (second element).

from quo.dialog import RadiolistBox

RadiolistBox(
 title="RadioList dialog example",
 text="Which breakfast would you like ?",
 values=[
 ("breakfast1", "Eggs and beacon"),
 ("breakfast2", "French breakfast"),
 ("breakfast3", "Equestrian breakfast")
])

[image: _images/radiolist1.png]

Check Box

The CheckBox() has the same usage and purpose than the Radiolist dialog, but allows several values to be selected and therefore returned.

from quo.dialog import CheckBox

CheckBox(
 title="CheckboxList dialog",
 text="What would you like in your breakfast ?",
 values=[
 ("eggs", "Eggs"),
 ("bacon", "Bacon"),
 ("croissants", "20 Croissants"),
 ("daily", "The breakfast of the day")
]
)

Styling of dialogs

A custom Style instance can be passed to alldialogs to override the default style. Also, text can be styled by passing an Text object.

from quo.dialog import MessageBox
from quo.style import Style
from quo.text import Text

style = Style.add({
 'dialog': 'bg:aquamarine',
 'dialog.body': 'bg:black fg:green',
 'dialog shadow': 'bg:yellow' })

MessageBox(
 title=Text('<style bg="blue" fg="white">Styled</style> '
 '<style fg="red">dialog</style> window'),
 text='Do you want to continue?\nPress ENTER to quit.',
 style=style)

[image: _images/styled1.png]

Styling reference sheet

In reality, the dialog commands presented above build a full-screen frame by using a list of components. The two tables below allow you to get the classnames available for each dialog therefore you will be able to provide a custom style for every element that is displayed, using the method provided above.

Note

All the dialogs use the Dialog component, therefore it isn’t specified explicitly below.

	Shortcut

	Components used

	quo.dialog.ConfirmationBox

	
	Label

	Button (x2)

	quo.dialog.ChoiceBox

	
	Label

	Button

	quo.dialog.PromptBox

	
	TextArea

	Button (x2)

	quo.dialog.MessageBox

	
	Label

	Button

	quo.dialog.RadiolistBox

	
	Label

	RadioList

	Button (x2)

	quo.dialog.CheckBox

	
	Label

	CheckboxList

	Button (x2)

	quo.dialog.ProgressBox

	
	Label

	TextArea (locked)

	ProgressBar

	Components

	Available classnames

	Dialog

	
	dialog

	dialog.body

	TextArea

	
	text-area

	text-area.prompt

	Label

	
	label

	Button

	
	button

	button.focused

	button.arrow

	button.text

	Frame

	
	frame

	frame.border

	frame.label

	Shadow

	
	shadow

	RadioList

	
	radio-list

	radio

	radio-checked

	radio-selected

	CheckboxList

	
	checkbox-list

	checkbox

	checkbox-checked

	checkbox-selected

	VerticalLine

	
	line

	vertical-line

	HorizontalLine

	
	line

	horizontal-line

	ProgressBar

	
	progress-bar

	progress-bar.used

Example

Let’s customize the example of the Check Box.

It uses 2 Button, a CheckboxList and a Label, packed inside a Dialog.
Therefore we can customize each of these elements separately, using for instance:

from quo.dialog import CheckBox
from quo.style import Style

style = Style.add({
 'dialog': 'bg:green',
 'button': 'bg:red',
 'checkbox': 'fg:blue',
 'dialog.body': 'bg:yellow',
 'dialog shadow': 'bg:khaki',
 'frame.label': 'fg:black',
 'dialog.body label': 'fg:aquamarine'})

CheckBox(
 title="CheckboxList dialog",
 text="What would you like in your breakfast ?",
 values=[
 ("eggs", "Eggs"),
 ("bacon", "Bacon"),
 ("croissants", "20 Croissants"),
 ("daily", "The breakfast of the day")
],
 style = style)

[image: _images/styled2.png]
» Check out more examples here [https://github.com/scalabli/quo/tree/master/examples/dialogs/]

Parse

This is intended to be a gentle introduction to Parser, a command-line parsing class based on argparse.

Optional arguments can be added to commands using the quo.parse.Parser.

Optional arguments in Quo are profoundly configurable and ought not to be mistaken for positional arguments.

	Parameters
	
	filename (str) - The name of the file to open (or '-' for stdin/stdout).

	prog - The name of the program (default:os.path.basename(sys.argv[0]))

	color (bool) - Print a colorful help output

	usage - A usage message (default: auto-generated from arguments)

	description - A description of what the program does

	epilog - Text following the argument descriptions

	argument_default - The default value for all arguments

	add_help (bool) - Add a -h/-help option

	allow_abbrev (bool)- Allow long options to be abbreviated unambiguously

	exit_on_error (bool) - Determines whether or not ArgumentParser exits with error info when an error occurs

How to name Optional Arguments

For the purpose of uniformity, a name is chosen in the following order

	In the event that the name is not prefixed with – or -, it will be considered a positional argument.

	If there is more than one name prefixed with – or -, the first one given is used as the name.

The basics

Let us start with a very simple example which does (almost) nothing:

from quo.parse import Parser
arg = Parser()
arg.parse()

Following is a result of running the code:

python example1.py --help

[image: _images/example1a.png]
python example1.py --verbose

[image: _images/example1b.png]
Running the script without any options results in nothing displayed to stdout. Not so useful.
The second one starts to display the usefulness of Parser. We have done almost nothing, but already we get a nice help message.

The –help option, which can also be shortened to -h, is the only option we get for free (i.e. no need to specify it). Specifying anything else results in an error. But even then, we do get a useful usage message.

from quo.parse import Parser

optional = Parser()
optional.argument("--verbosity", help="Increase the verbosity")
arg = optional.parse()
if arg.verbosity:
 print("Verbosity turned on")

python example2.py --verbosity 1

[image: _images/example2a.png]
python example2.py --help

[image: _images/example2b.png]
python example2.py --verbosity

The program above is written so as to display something when –verbosity is specified and display nothing when not specified.
To show that the option is actually optional, there is no error when running the program without it.

Note

By default, if an optional argument isn’t used, the relevant variable, in this case argsverbosity, is given None as its value.

When using the optional argument in this case –verbosity option, one must also specify some value, any value.

The above example accepts arbitrary integer values for –verbosity, but for our simple program, only two values are actually useful, True or False. Let’s modify the code accordingly:

from quo.parse import Parser

optional = Parser()
optional.argument("--verbose", help="Increase the verbosity", action="store_true")
arg = optional.parse()
if arg.verbose:
 print("Verbosity turned on")

And the output:

python example2.py --verbose

python example2.py --verbose 1

python example2.py --help

Here is what is happening:

The option is now more of a flag than something that requires a value. We even changed the name of the option to match that idea. Note that we now specify a new keyword, action, and give it the value “store_true”. This means that, if the option is specified, assign the value True to arg.verbose. Not specifying it implies False.

It complains when you specify a value, in true spirit of what flags actually are.

Notice the different help text.

Short options

If you are familiar with command line usage, you will notice that I haven’t yet touched on the topic of short versions of the options. It’s quite simple:

from quo.parse import Parser

optional = Parser()
optional.argument("-v", "--verbose", help="Increase the verbosity", action="store_true")
arg = optional.parse()
if arg.verbose:
 print("Verbosity turned on")

And here goes:

python example3.py -v

/image/

python example3.py --help

/image/

Note that the new ability is also reflected in the help text.

import argparse
The help message is a bit different.

Positional Arguments

Introducing Positional arguments
An example:

from quo.parse import Parser

positional = Parser()

positional.argument("echo")
arg = positional.parse()
print(arg.echo)

Note however that, although the help display looks nice and all, it currently is not as helpful as it can be. For example we see that we got echo as a positional argument, but we don’t know what it does, other than by guessing or by reading the source code. So, let’s make it a bit more useful:

 from quo.parse import Parser

 positional = Parser()

 positional.argument("echo", help="echo the string you use here")
 arg = positional.parse()
 print(arg.echo)

-h, --help show this help message and exit

Now, how about doing something even more useful:

from quo.parse import Parser

positional = Parser()

positional.argument("square", help="display a square of a given number")
arg = positional.parse()
print(arg.square**2)

Following is a result of running the code:

python prog.py 4

[image: _images/example2c.png]
That didn’t go so well. That’s because Parser treats the options we give it as strings, unless we tell it otherwise. So, let’s tell it to treat that input as an integer:

from quo.parse import Parser

positional = Parser()

positional.argument("square", help="display a square of a given number", type=int)
arg = positional.parse()
print(arg.square**2)

Following is a result of running the code:

python prog.py 4

[image: _images/example2c.png]
16

how about this…

python prog.py four

[image: _images/example2c.png]
That went well. The program now even helpfully quit on illegal input before proceeding.

Combining Positional and Optional arguments

Our program keeps growing in complexity

from quo.parse import Parser

parser = Parser()

parser.argument("square", type=int, help="display a square of a given number")
parser.argument("-v", "--verbose", action="store_true", help="increase output verbosity")
arg = parser.parse()

answer = arg.square**2

if args.verbose:
 print(f"the square of {arg.square} equals {answer}")

else:
 print(answer)

And now the output:

python prog.py

[image: _images/example2c.png]
python3 prog.py 4 --verbose

[image: _images/example2c.png]
Note that the order does not matter. The above program can be written like so:

python3 prog.py --verbose 4

How about we give this program of ours back the ability to have multiple verbosity values, and actually get to use them:

from quo.parse import Parser

parser = Parser()

parser.argument("square", type=int, help="display a square of a given number")
parser.argument("-v", "--verbosity", type=int, help="increase output verbosity")
arg = parser.parse()

answer = arg.square**2

if arg.verbosity == 2:
 print(f"the square of {arg.square} equals {answer}")
elif arg.verbosity == 1:
 print(f"{arg.square}^2 == {answer}")
else:
 print(answer)

And the output:

python prog.py 4

$ python3 prog.py 4
16

python prog.py 4 -v

$ python3 prog.py 4 -v
usage: prog.py [-h] [-v VERBOSITY] square
prog.py: error: argument -v/–verbosity: expected one argument

python prog.py 4 -v 1

python prog.py 4 -v 2

python prog.py 4 -v 3

These all look good except the last one, which exposes a bug in our program. Let’s fix it by restricting the values the --verbosity option can accept:

from quo.parse import Parser

parser = Parser()

parser.argument("square", type=int, help="display a square of a given number")
parser.argument("-v", "--verbosity", type=int, choices=[0, 1, 2], help="increase output verbosity")
arg = parser.parse()

answer = arg.square**2

if arg.verbosity == 2:
 print(f"the square of {arg.square} equals {answer}")

elif arg.verbosity == 1:
 print(f"{arg.square}^2 == {answer}")

else:
 print(answer)

And the output:

python prog.py 4 -v 3

Note that the change also reflects both in the error message as well as the help string.
.. code:: console

python prog.py 4 -h

Now, let’s use a different approach of playing with verbosity, which is pretty common. It also matches the way the CPython executable handles its own verbosity argument (check the output of python –help):

from quo.parse import Parser

parser = Parser()

parser.argument("square", type=int, help="display a square of a given number")
parser.argument("-v", "--verbosity", action="count", help="increase output verbosity")
arg = parser.parse()

answer = arg.square**2
if arg.verbosity == 2:
 print(f"the square of {arg.square} equals {answer}")

elif arg.verbosity == 1:
 print(f"{arg.square}^2 == {answer}")

else:
 print(answer)

We have introduced another action, count, to count the number of occurrences of specific options.

python prog.py 4

python prog.py 4 -v

python prog.py 4 -vv

python prog.py 4 -v 1

Grouping conflicting optional arguments

group() allows us to specify options that conflict with each other. Let’s also change the rest of the program so that the new functionality makes more sense: we’ll introduce the --quiet option, which will be the opposite of the --verbose one.

from quo.parse import Parser

parser = Parser()

group = parser.group()
group.argument("-v", "--verbose", action="store_true")
group.argument("-q", "--quiet", action="store_true")

parser.argument("x", type=int, help="the base")
parser.argument("y", type=int, help="the exponent")

arg = parser.parse()

answer = arg.x**arg.y

if arg.quiet:
 print(answer)
elif arg.verbose:
 print(f"{arg.x} to the power {arg.y} equals {answer}")
else:
 print(f"{arg.x}^{arg.y} == {answer}")

Our program is now simpler, and we’ve lost some functionality for the sake of demonstration. Anyways, here’s the output

python prog.py 4 2

Ouput:

4^2 == 16

$ python prog.py 4 2 -q

Output:

16

$ python3 prog.py 4 2 -v

Ouput:

4 to the power 2 equals 16

$ python prog.py 4 2 -vq

That should be easy to follow. I’ve added that last output so you can see the sort of flexibility you get, i.e. mixing long form options with short form ones.

Before we conclude, you probably want to tell your users the main purpose of your program, just in case they don’t know

from quo.parse import Parser

parser = Parser(description="calculate X to the power of Y")

group = parser.group()

group.argument("-v", "--verbose", action="store_true")
group.argument("-q", "--quiet", action="store_true")
parser.argument("x", type=int, help="the base")
parser.argument("y", type=int, help="the exponent")

arg = parser.parse()
answer = arg.x**arg.y

if arg.quiet:
 print(answer)
elif arg.verbose:
 print("{} to the power {} equals {}".format(arg.x, arg.y, answer))
else:
 print("{}^{} == {}".format(arg.x, arg.y, answer))

Note that slight difference in the usage text. Note the [-v | -q], which tells us that we can either use -v or -q, but not both at the same time

python prog.py --help

Progress bars 📊

A progress bar is a user interface element that indicates the progress of an operation. Progress bar supports two modes to represent progress: determinate, and indeterminate.
Showing Progress Bars
Sometimes, you have command line scripts that need to process a lot of data,
but you want to quickly show the user some progress about how long that
will take. Quo supports simple progress bar rendering for that.

The basic usage is very simple: the idea is that you have an iterable that
you want to operate on. For each item in the iterable it might take some
time to do processing.

Simple progress bar

Creating a new progress bar can be done by calling the
ProgressBar

The progress can be displayed for any iterable. This works by wrapping the
iterable (like range) with the
ProgressBar. This
way, the progress bar knows when the next item is consumed by the forloop and
when progress happens.

import time

from quo.progress import ProgressBar

with ProgressBar() as pb:
 for i in pb(range(800)):
 time.sleep(.01)

[image: _images/dots3.png]
Keep in mind that not all iterables can report their total length. This happens
with a typical generator. In that case, you can still pass the total as follows
in order to make displaying the progress possible:

def some_iterable():
 yield ...

with ProgressBar() as pb:
 for i in pb(some_iterable, total=1000):
 time.sleep(.01)

Autohide progressbar

Autohide the progressbar after consuming an iterator.

(Added on v2023.3)

import time

from quo.progress import ProgressBar

with ProgressBar() as pb:
 for i in pb(range(800), auto_hide=True):
 time.sleep(.01)

Adding a title and label

Each progress bar can have one title, and for each task an individual label.

import time

from quo.progress import ProgressBar

title = "<style fg='yellow' bg='black'>Downloading 4 files...</style>"

label = "<red>some file:</red>"

with ProgressBar(title) as pb:
 for i in pb(range(800), label):
 time.sleep(.01)

[image: _images/colored-title-and-label.png]

Adding a toolbar

import time

from quo.progress import ProgressBar

toolbar = "Press CTRL+C to quit"

with ProgressBar(toolbar=toolbar) as pb:
 for i in pb(range(800)):
 time.sleep(.01)

[image: _images/toolbar.png]

Spinner themes

(Added on v2023.3)

	arrows

import time

from quo.progress import ProgressBar

with ProgressBar(spinner="arrows") as pb:
 for i in pb(range(800)):
 time.sleep(0.01

[image: _images/arrows.png]

	dots3

import time

from quo.progress import ProgressBar

with ProgressBar(spinner="dots3") as pb:
 for i in pb(range(800)):
 time.sleep(0.01

[image: _images/dots3.png]

	hamburger

import time

from quo.progress import ProgressBar

with ProgressBar(spinner="hamburger") as pb:
 for i in pb(range(800)):
 time.sleep(0.01

[image: _images/hamburger.png]

Multiple parallel tasks

A quo ProgressBar can display the
progress of multiple tasks running in parallel. Each task can run in a separate
thread and the ProgressBar user interface
runs in its own thread.

Notice that we set the “daemon” flag for both threads that run the tasks. This
is because control-c will stop the progress and quit our application. We don’t
want the application to wait for the background threads to finish. Whether you
want this depends on the application.

import threading
import time

from quo.progress import ProgressBar

with ProgressBar("TWO TASKS") as pb:
 # Two parallel tasks.
 def task1():
 for i in pb(range(100)):
 time.sleep(.05)

 def task2():
 for i in pb(range(150)):
 time.sleep(.08)

 # Start threads.
 t1 = threading.Thread(target=task1)
 t2 = threading.Thread(target=task2)
 t1.daemon = True
 t2.daemon = True
 t1.start()
 t2.start()

 # Wait for the threads to finish. We use a timeout for the join() call,
 # because on Windows, join cannot be interrupted by Control-C or any other
 # signal.
 for t in [t1, t2]:
 while t.is_alive():
 t.join(timeout=.5)

[image: _images/two-tasks.png]

Nested progressbars

Example of nested progress bars.

import time

from quo.progress import ProgressBar

title='<blue>Nested progress bars</blue>'
toolbar="[Control-L] clear [Control-C] abort"

with ProgressBar(title, bottom_toolbar=toolbar)as pb:
 for i in pb(range(6), label="Main task"):
 for j in pb(range(200), label=f"Subtask <%s>" % (i + 1,), auto_hide=True):
 time.sleep(0.01)

[image: _images/nested.png]

Rainbow progress bar

A simple progress bar, visualised with rainbow colors for fun.

import time

from quo.progress import ProgressBar

with ProgressBar("Rainbow Progressbar", rainbow=True, spinner="arrows") as pb:
 for i in pb(range(20), label="Downloading...", auto_hide=True):
 time.sleep(0.1)

[image: _images/rainbow.png]

Adding a key binder

Like other quo applications, we can add custom key bindings, by passing quo.keys.bind() which is an instance of Bind object

import os
import signal
import time

from quo.keys import bind
from quo.progress import ProgressBar

bottom_toolbar = 'Press [q] to Abort or [x] to Send Control-C.'

Create custom key bindings first
cancel = [False]

@bind.add("q")
def _(event):
 "Quit by setting cancel flag."
 cancel[0] = True

@bind.add("x")
def _(event):
 "Quit by sending SIGINT to the main thread."
 os.kill(os.getpid(), signal.SIGINT)

with ProgressBar(bottom_toolbar=bottom_toolbar) as pb:
 for i in pb(range(800)):
 time.sleep(0.01)

 if cancel[0]:
 break

when “x” is pressed, we set a cancel flag, which stops the progress.
It would also be possible to send SIGINT to the mean thread, but that’s not
always considered a clean way of cancelling something.

In the example above, we also display a toolbar at the bottom which shows the
key bindings.

Read more about key bindings [https://quo.readthedocs.io/en/latest/kb.html]

Here’s a more complex demonstration of what’s possible with the progress bar.

import threading
import time

from quo.progress import ProgressBar

title = "Example of many parallel tasks."
toolbar = "[Control-L] clear [Control-C] abort"

with ProgressBar(title, bottom_toolbar=toolbar) as pb:
 def run_task(label, total, sleep_time):
 for i in pb(range(total), label=label):
 time.sleep(sleep_time)

 threads = [
 threading.Thread(target=run_task, args=("First task", 50, 0.1)),
 threading.Thread(target=run_task, args=("Second task", 100, 0.1)),
 threading.Thread(target=run_task, args=("Third task", 8, 3)),
 threading.Thread(target=run_task, args=("Fourth task", 200, 0.1)),
 threading.Thread(target=run_task, args=("Fifth task", 40, 0.2)),
 threading.Thread(target=run_task, args=("Sixth task", 220, 0.1)),
 threading.Thread(target=run_task, args=("Seventh task", 85, 0.05)),
 threading.Thread(target=run_task, args=("Eight task", 200, 0.05)),
]

 for t in threads:
 t.daemon = True
 t.start()

 # Wait for the threads to finish. We use a timeout for the join() call,
 # because on Windows, join cannot be interrupted by Control-C or any other
 # signal.
 for t in threads:
 while t.is_alive():
 t.join(timeout=0.5)

[image: _images/many-parallel-tasks.png]
» Check out more examples here [https://github.com/scalabli/quo/tree/master/examples/progress/]

Prompts

Quo supports prompts in two different places. The first is automated
prompts when the parameter handling happens, and the second is to ask for
prompts at a later point independently.

This can be accomplished with the prompt() function, which asks for
valid input according to a type, or the quo.prompt.Prompt object, this makes it possible to create a Prompt instance followed by calling prompt() method for every input. This creates a kind of an input session and its packed with lots of features.
You can also use the quo.confirm() function, which asks for confirmation (yes/no).

The prompt function is a quo function that displays a prompt to the user and waits for input.
The purpose of the prompt function is to obtain user input from the console. It can be used to ask the user for a variety of input, including text, numbers,
and boolean values.
It has several optional arguments which can be used to customize the prompt and how the input is handled.

Parameters

The prompt function takes several parameters, which are explained below:

text: The text to show for the prompt. This parameter is required and must be a string.
default: The default value to use if no input happens. If this is not given, it will prompt until it’s aborted. This parameter is optional and can be any data type.
hide: If this is set to true, then the input value will be hidden, and asterisks printed instead. This parameter is optional and defaults to False.
affirm: Asks for confirmation for the value. This parameter is optional and defaults to False.
type: The type to use to check the value against. This parameter is optional and defaults to str.
suffix: A suffix that should be added to the prompt. This parameter is optional and defaults to an empty string.
show_default: Shows or hides the default value in the prompt. This parameter is optional and defaults to True.
fg: The color for the prompt text. This parameter is optional and defaults to None.
bg: The color for the prompt background. This parameter is optional and defaults to None.

Examples

Here’s a simple example

import quo

quo.prompt('Give me some input: ')

[image: _images/prompt.png]
The prompt function returns the input value provided by the user, or the default value if no input was provided. The data type of the return value will depend on the
type parameter.

import quo

name = quo.prompt('What is your name?', type=str)
age = quo.prompt('What is your age?', default=18, type=int)

Additionally, the type will be determined automatically if a default value is
provided. For instance, the following will only accept floats:

import quo

quo.prompt('Please enter a number', default=42.0)

App Prompts

App prompts are integrated into the app interface. See
app-prompting for more information. Internally, it
automatically calls either quo.prompt() or quo.confirm() as necessary.

Input Validation

A prompt can have a validator attached. To manually ask for user input, you can use the quo.prompt() function or the quo.prompt.Prompt object.
For instance, you can ask for a valid integer:

from quo import prompt

prompt('Please enter a valid integer', type=int)

You can also pass the affirm flag to quo.prompt()

from quo import prompt
prompt("What is your name?: ", affirm=True)

Alternatively, you can use class:quo.types.Validator
This should implement the Validator abstract base class. This requires only one method, named type that
takes a Document as input and raises
ValidationError when the validation fails.

Added on v2022.4.4 :meth:int [bool] can be used when validating numerical characters.

Integer Validator

from quo.prompt import Prompt

session = Prompt(int=True)

number = int(session.prompt('Give a number: '))
print(f"You said: {number}")

[image: _images/number-validator.png]
By default, the input is validated in real-time while the user is typing, but
Quo can also validate after the user presses the enter key:

session = Prompt(
 int=True,
 validate_while_typing=False
)

session.prompt('Give a number: ')

If the input validation contains some heavy CPU intensive code, but you don’t
want to block the event loop, then it’s recommended to wrap the validation class in a ThreadedValidator.

Input Prompts using Prompt() class

Input history can be kept between consecutive quo.prompt() and quo.prompt.Prompt calls incase you want to ask for multiple inputs, but each input call needs about the same arguments.

from quo import prompt

tex1 = prompt("What is your name?")
text2 = prompt("Where are you from?")

from quo.prompt import Prompt

Create prompt object.
session = Prompt()

Do multiple input calls.
text1 = session.prompt("What's your name?")
text2 = session.prompt("Where are you from?")

Multiline Input

Reading multiline input is as easy as passing the multiline=True parameter.

from quo.prompt import Prompt

session = Prompt(multiline=True)
session.prompt('> ')

A side effect of this is that the enter key will now insert a newline instead of accepting and returning the input. The user will now have to press Meta+Enter in order to accept the input. (Or Escape followed by Enter.)

It is possible to specify a continuation prompt. This works by passing :meth:continuation [bool] to Prompt.
This function is supposed to return formatted text, or a list of (style, text) tuples. The width of the returned text should not
exceed the given width. (The width of the prompt margin is defined by the prompt.)

continuation() was added on v2022.4.4

from quo.prompt import Prompt

session = Prompt(multiline=True, continuation=True)

session.prompt('multiline input> ')

[image: _images/multiline-input.png]

Hide Input

When the hide=True flag in quo.prompt() or quo.prompt.Prompt has been given, the input is hidden in quo.prompt() or replaced by asterisks (* characters) in quo.prompt.Prompt

Using function quo.prompt()

from quo import prompt

prompt("Enter password: ", hide=True)

Using class `quo.prompt.Prompt()

from quo.prompt import Prompt

session = Prompt(hide=True)

session.prompt("Password: ")

[image: _images/promptclasspassword.png]

Confirmation Prompts

To ask if a user wants to continue with an action, the confirm()
function comes in handy. By default, it returns the result of the prompt
as a boolean value:
Parameters

	text (str) – the question to ask.

	default (Optional[str, int]) – The default value to use when no input is given. If None, repeat until input is given.

	abort (Optional[bool]) – if this is set to True a negative answer aborts the exception by raising Abort.

	suffix (str) – a suffix that should be added to the prompt.

	show_default (Optional[bool]) – shows or hides the default value in the prompt.

	err (bool) – if set to true the file defaults to stderr instead of stdout, the same as with echo.

from quo import confirm

confirm('Do you want to continue?')

System prompt

If you press meta-! or esc-!, you can enter system commands like ls or cd.

from quo.prompt import Prompt

session = Prompt(system_prompt=True)

session.prompt("Give me some input: ")

Suspend prompt

Pressing ctrl-z will suspend the process from running and then run the command fg to continue the process.

from quo.prompt import Prompt

session = Prompt(suspend=True)

sessiom.prompr("Give me some input: ")

Prompt bottom toolbar

Adding a bottom toolbar is as easy as passing a bottom_toolbar argument to prompt(). This argument be either plain text, formatted text or a callable that returns plain or formatted text.

When a function is given, it will be called every time the prompt is rendered, so the bottom toolbar can be used to display dynamic information.

By default, the toolbar has the reversed style, which is why we are setting the background instead of the foreground.

from quo.prompt import Prompt

session = Prompt()

session.prompt('> ', bottom_toolbar="<i>This is a</i><style bg='red'> Toolbar</style>")

[image: _images/bottom-toolbar.png]
Here’s an example of a multiline bottom toolbar.

from quo.prompt import Prompt

session = Prompt()

session.prompt("Say something: ", bottom_toolbar="This is\na multiline toolbar")

[image: _images/multiline-bottom-toolbar.png]

Right prompt(rprompt)

The quo.prompt.Prompt class has out of the box support for right prompts as well. People familiar to ZSH could recognise this as the RPROMPT option.

This can be either plain text, formatted text or a callable which returns either.

The following example returns a formatted text:

from quo.prompt import Prompt

session = Prompt()
session.prompt(">> ", rprompt='<style fg="red" bg="green">Quo rprompt</style>')

[image: _images/red-and-green-rprompt.png]

Syntax highlighting

Quo ships with an intuitive syntax highligher.
It is also possible to create a custom highligher by implementing the Highlight class.

(changed since v2022.9)

from quo.prompt import Prompt
from quo.highlight import Highlight

session = Prompt(highlighter=Highlight.html)

session.prompt('Enter HTML: ')

[image: _images/highlighthtml.png]
If you want to use another style you can do the following:»

from quo.prompt import Prompt
from quo.highlight import Highlight

session = Prompt(highlighter=Highlight.python)
session.prompt('Enter Python code: ')

[image: _images/highlightpython.png]
or:»

from quo.prompt import Prompt
from quo.highlight import Highlight

session = Prompt(highlighter=Highlight.css)
session.prompt('Enter css: ')

Syntax highlighting is as simple as adding a highlighter. All of the available syntax styles can be found here [http://quo.readthedocs.io/en/latest/syntax_styles.html] or
Read more about styling.

Placeholder text

A placeholer is a text that’s displayed as long as no input is given.
This won’t be returned as part of the output.
This can be a string, formatted text or a callable that returns formatted text.

Plain text placeholder

from quo.prompt import Prompt

session = Prompt()

session.prompt("What is your name?: ", placeholder="..(please type something)")

Formatted text placeholder

from quo.prompt import Prompt

session = Prompt()
session.prompt("What is your name?: ", placeholder='<gray>(please type something)</gray>')

[image: _images/gray-placeholder.png]

Colors

By default, a neutral built-in color syntax is used, but any style instance can be passed to the Prompt class.

Note

quo.prompt() has different semantics and cannot output colored text but quo.prompt.Prompt has several ways on how this can be achieved.

Plain text prompt

from quo.prompt import Prompt

session = Prompt()

session.prompt("What is your name?: ")

Formatted text prompt

added on v2023.2

It is possible to add some colors to the prompt itself.
In the following example, the prompt will be in green.
added on v2023.2

from quo.prompt import Prompt

session = Prompt()
session.prompt("<green>What is your name?: </green>")

Styled prompt

from quo.prompt import Prompt

session = Prompt()
session.prompt("<red>john</red><white>@</white><green>localhost</green><red>:</red><cyan><u>/user/john</u></cyan><purple>$ </purple>")

[image: _images/styled-prompt.png]

Coloring the prompt and the input

It is possible to add some colors to the prompt itself and the input.
In the following example, the prompt and the input will be in red

version changed 2023.2

from quo.prompt import Prompt

session = Prompt(fg="red")
session.prompt("Type something: ")

[image: _images/red-prompt.png]
fg and bg parameters added on version 2023.2
.. code:: python

from quo.prompt import Prompt

session = Prompt(fg=”red”, bg=”green”)

session.prompt(“Type something: “)

Here’s an example upgrade:

from quo.prompt import Prompt

session = Prompt(fg="blue") #The input will be colored blue

session.prompt("<red>john</red><white>@</white><green>localhost</green><red>:</red><cyan><u>/user/john</u></cyan><purple>$ </purple>")

[image: _images/blue-input.png]
The message can be any kind of formatted text, as discussed here. It can also be a callable that returns some formatted text.

By default, colors are taken from the 256 color palette. If you want to have 24-bit true color, this is possible by adding the color_depth=ColorDepth.TRUE_COLOR option to the Prompt .

from quo.prompt import Prompt
from quo.color import ColorDepth

session = Prompt(color_depth=ColorDepth.TRUE_COLOR)

session.prompt("<style fg='red' bg='blue'>What is your name:? </style>")

Completion

Auto suggestion

Auto suggestion is a way to propose some input completions to the user like the fish shell [http://fishshell.com/].

Usually, the input is compared to the history and when there is another entry starting with the given text, the completion will be shown as gray text behind the current input. Pressing the right arrow → or ctrl-e will insert this suggestion, alt-f will insert the first word of the suggestion.

Added :param:`suggest` on v2022.5

Note

When suggestions are based on the history, don’t forget to share one History object between consecutive prompt calls. Using a Prompt

Example:

from quo.prompt import Prompt
from quo.history import MemoryHistory

MemoryHistory.append("import os")
MemoryHistory.append('print("hello")')
MemoryHistory.append('print("world")')
MemoryHistory.append("import path")

session = Prompt(history=MemoryHistory, suggest="history")
while True:
 text = session.prompt('> ')
 print(f"You said: {text}")

[image: _images/auto-suggestion.png]
A suggestion does not have to come from the history. Any implementation of the AutoSuggest abstract base class can be passed as a string i.e history, dynamic or conditional

Autocompletion

Autocompletion can be added by passing a completer parameter.

Press [Tab] to autocomplete

from quo.prompt import Prompt
from quo.completion import WordCompleter

example = WordCompleter(['USA', 'UK', 'Canada', 'Kenya'])
session = Prompt(completer=example)
session.prompt('Which country are you from?: ')

WordCompleter is a simple completer that completes the last word before the cursor with any of the given words.

[image: _images/wordcompleter.png]
Demonstration of a custom completer class and the possibility of styling completions independently.

from quo.completion import Completer, Completion
from quo.prompt import Prompt

colors = [
 "red",
 "blue",
 "green",
 "orange",
 "purple",
 "yellow",
 "cyan",
 "magenta",
 "pink",
]

class ColorCompleter(Completer):
 def get_completions(self, document, complete_event):
 word = document.get_word_before_cursor()
 for color in colors:
 if color.startswith(word):
 yield Completion(
 color,
 start_position=-len(word),
 style="fg:" + color,
 selected_style="fg:white bg:" + color,
)

session = Prompt(completer=ColorCompleter(), complete_style="multi_column")
session.prompt("Type a color: ")

[image: _images/custom-completion.png]

Nested completion

Sometimes you have a command line interface where the completion depends on the
previous words from the input. Examples are the CLIs from routers and switches.
A simple WordCompleter is not enough in that case. We want to to be able to define completions at multiple hierarchical levels. NestedCompleter solves this issue:

from quo.prompt import Prompt
from quo.completion import NestedCompleter

completer = NestedCompleter.add({
 'show': {
 'version': None,
 'clock': None,
 'ip': {
 'interface': {'brief'}
 }
 },
 'exit': None
 })
 session = Prompt(completer=completer)
 session.prompt('# ')

Whenever there is a None value in the dictionary, it means that there is no further nested completion at that point. When all values of a dictionary would be None, it can also be replaced with a set.

Complete while typing

Autcompletions can be generated automatically while typing or when the user presses the tab key. This can be configured with the complete_while_typing option:

session.prompt('Enter HTML: ', completer=completer, complete_while_typing=True)

Notice that this setting is incompatible with the enable_history_search
option. The reason for this is that the up and down key bindings would conflict
otherwise. So, make sure to disable history search for this.

History

A History object keeps track of all the previously entered strings, so that the up-arrow can reveal previously entered items.

MemoryHistory

The recommended way is to use a Prompt, which uses an MemoryHistory which has ^ (up) arrow partial string matching enabled by default.

from quo.history import MemoryHistory
from quo.prompt import Prompt

MemoryHistory.append("import os")
MemoryHistory.append('print("hello")')
MemoryHistory.append('print("world")')
MemoryHistory.append("import path")

session = Prompt(history=MemoryHistory)

while True:
 session.prompt()

FileHistory

To persist a history to disk, use a FileHistory instead of the default MemoryHistory. This history object can be passed to a Prompt.
For instance:

from quo.history import FileHistory
from quo.prompt import Prompt

history = FileHistory("~/.myhistory")
session = Prompt(history=history)

while True:
 session.prompt()

Adding custom key bindings

By default, every prompt already has a set of key bindings which implements the usual Vi or Emacs behaviour. We can extend this by passing quo.keys.bind() which is an instance of Bind.

Note

quo.prompt() function does not support key bindings but quo.prompt.Prompt does

An example of a prompt that prints 'hello world' when Control-T is pressed.

from quo import print
from quo.keys import bind
from quo.prompt import Prompt

@bind.add('ctrl-t')
def _(event):
Print `Hello, World!` when `ctrl-t` is pressed."
 print("Hello, World!")

 @bind.add('ctrl-x')
def _(event):
 #Exit when `ctrl-x` is pressed. "
 event.app.exit()

session = Prompt()

session.prompt('> ')

Conditional Key bindings

Often, some key bindings can be enabled or disabled according to a certain
condition. For instance, the Emacs and Vi bindings will never be active at the
same time, but it is possible to switch between Emacs and Vi bindings at run
time.

In order to enable a key binding according to a certain condition, we have to
pass it a Condition instance. (Read more about filters.)

import datetime
from quo.filters import Condition
from quo.keys import bind
from quo.prompt import Prompt

@Condition
def second_half():
 " Only activate key binding on the second half of each minute. "
 return datetime.datetime.now().second > 30

@bind.add('ctrl-t', filter=second_half)
def _(event):
 # ...
 pass
session = Prompt()
session.prompt('> ')

Toggle visibility of input

Display asterisks instead of the actual characters with the addition of a ControlT shortcut to hide/show the input.

from quo.filters import Condition
from quo.keys import bind
from quo.prompt import Prompt

hidden = [True] # Nonlocal

@bind.add("ctrl-t")
def _(event):
 "When ControlT has been pressed, toggle visibility."
 hidden[0] = not hidden[0]

session = Prompt(hide=Condition(lambda : hidden[0]))
session.prompt("Password: ")

Mouse support

There is limited mouse support for positioning the cursor, for scrolling (in case of large multiline inputs) and for clicking in the autocompletion menu.

Enabling this can be done by passing the mouse_support=True option.

from quo.prompt import Prompt

session = Prompt(mouse_support=True)
session.prompt('What is your name: ')

Line wrapping

Line wrapping is enabled by default. This is what most people are used to and this is what GNU Readline does. When it is disabled, the input string will scroll horizontally.

from quo.prompt import Prompt

session = Prompt(wrap_lines=False)
session.prompt('What is your name: ')

» Check out more examples here [https://github.com/scalabli/quo/tree/master/examples/prompts/]

Rule

The Rule method will draw a horizontal line.
Added on v2023.1

	Parameters
	
	char Optional[(str)] - Character to be used to draw out the border.

	lines Optional[(int)] - Indicates the number of lines to be drawn.

	multicolored Optional[(bool)] - If True, a multicolored border will be applied.

	color Optional[(str)] - Color to be applied.

from quo.rule import Rule

rule = Rule()

rule.draw()

[image: _images/default1.png]

	Multicolored

from quo.rule import Rule

rule = Rule()

rule.draw(multicolored=True)

[image: _images/multicolored.png]

	Styled

from quo.rule import Rule

rule = Rule()
rule.draw(color="purple")

[image: _images/styled3.png]

	Multiline

Added on v2023.3

from quo.rule import Rule

rule = Rule(lines=4)

rule.draw()

[image: _images/multiline1.png]

Table

Printing tabular data

quo.table.Table function offers a number of configuration options to set the look and feel of the table, including how borders are rendered and the style and alignment of the columns.

Parameters

	data - The first required argument. Can be a list-of-lists (or another iterable of iterables), a list of named tuples, a dictionary of iterables, an iterable of dictionaries, a two-dimensional NumPy array, NumPy record array, or a Pandas’ dataframe.

	align - WindowAlign value or callable that return an WindowAlign value. alignment of content. i.e left, centre or right. centre is the default value.

	style - A style string.

	
	theme - plain - Separates columns with a double space.
	
	simple - like Pandoc simple_tables.

	grid - similar to tables produced by Emacs table.el package.

	fancy_grid - (Default theme) draws a grid using box-drawing characters.

	pipe - Like tables in PHP Markdown Extra extension.

	orgtbl - Like tables in Emacs org-mode and orgtbl-mode.

	latex - Produces a tabular environment of LaTeX document markup.

	presto - Like tables produce by the Presto CLI.

	mediawiki - Produces a table markup used in Wikipedia and on other MediaWiki-based sites.

	rst - Like a simple table format from reStructuredText.

Changed on v2022.4.3

from quo.table import Table

data = [
["Name", "Gender", "Age"],
["Alice", "F", 24],
["Bob", "M", 19],
["Dave", "M", 24]
]

table = Table(data)

table.print()

[image: _images/default2.png]

Table headers

To print nice column headers, supply the headers argument.

	headers can be an explicit list of column headers.

	if headers=”firstrow”, then the first row of data is used

	if headers=”keys”, then dictionary keys or column indices are used otherwise a headerless table is produced.

from quo.table import Table

data = [
 ["Name", "Gender", "Age"],
 ["Alice", "F", 24],
 ["Bob", "M", 19],
 ["Dave", "M", 24]
]

table = Table(data)
table.print(headers="firstrow")

Column Widths and Line Wrapping

Table() will, by default, set the width of each column to the length of the longest element in that column. However, in situations where fields are expected to reasonably be too long to look good as a single line, :param:`column_width` can help automate word wrapping long fields.

from quo.table import Table

data = [
 [1, 'John Smith', 'This is a rather long description that might look better if it is wrapped a bit']
]

table = Table(data)
table.print(headers=("Issue Id", "Author", "Description"), column_width=[None, None, 30])

[image: _images/width.png]
Right aligned table

from quo.table import Table

data = [
 ["Name", "Gender", "Age"],
 ["Alice", "F", 24],
 ["Bob", "M", 19],
 ["Dave", "M", 24]
]

table = Table(data)
table.print(align="right")

[image: _images/right1.png]
Colored table

from quo.table import Table

data = [
 ["Name", "Gender", "Age"],
 ["Alice", "F", 24],
 ["Bob", "M", 19],
 ["Dave", "M", 24]
]

table = Table(data)
table.print(fg="green")

[image: _images/green.png]
Grid table

from quo.table import Table

data = [
 ["Name", "Gender", "Age"],
 ["Alice", "F", 24],
 ["Bob", "M", 19],
 ["Dave", "M", 24]
]

table = Table(data)
table.print(theme="grid")

[image: _images/grid.png]

Widgets

A collection of reusable components for building full screen applications.

When in full_screen mode, the default key binder to exit the application is Ctrl-C, however you can set your own.

Frame

Draw a border around any container, optionally with a title text.
Changing the title and body of the frame is possible at runtime by assigning to the body and title attributes of this class.

	Parameters
	
	body - Another container object.

	title (Optional[str]) - Text to be displayed in the top of the frame (can be formatted text i.e <green>Hello</green>)

	frame_color - Frame color string. (Added on v2023.5.1)

	width (Optional[int]) - Frame width

	height (Optional[int]) - Frame height.

from quo import container
from quo.frame import Frame
from quo.keys import bind
from quo.label import Label

root = Frame(
 Label("Hello, World!"),
 title="Quo: python")

@bind.add("ctrl-z") #press ctrl+z to exit
def _(event):
 event.app.exit()

container(root, bind=True, full_screen=True)

[image: _images/label.png]

Box

Add padding around a container.
This also makes sure that the parent can provide more space than required by the child. This is very useful when wrapping a small element with a fixed size into a VSplit or HSplit object.

	Parameters
	
	body - Another container object.

	padding - The margin to be used around the body. This can be overridden by :param:`padding_left`, :param:`padding_right`, :param:`padding_top` and :param:`padding_bottom` parameters.

	fg (Optional[str]) - A foregound color string.

	bg (Optional[str]) - A background color string.

	char (Optional[str]) - Character to be used for filling the space around the body. (This is supposed to be a character with a terminal width of 1.)

from quo import container
from quo.box import Box
from quo.keys import bind
from quo.label import Label

label = Label("<fg='black' bg='red'>Hello, World</style>")

content = Box(label, padding=5)

Press `q` to cancel
@bind.add("q")
def _(event):
 event.app.exit()

container(content, bind=True, full_screen=True)

Label

Widget that displays the given text. It is not editable or focusable.

	Parameters
	
	text (str) - Text to display. Can be multiline.

	width (int)- When given, use this width, rather than calculating it from the text size.

	bold (bool) - Bold text.

	italic (bool)- Italic text.

	underline (bool) - Underline text.

	fg (str) - Foreground text color.

	bg (str) - Background text color.

	fixed_width (bool) - When False, don’t take up more width than preferred, i.e. the length of the longest line of the text, or value of width parameter, if given. True by default

	fixed_height (bool)- When False, don’t take up more width than the preferred height, i.e. the number of lines of the text. True by default.

(Changed on v2023.3)

You can print the layout to the output in a non-interactive way like so:

from quo import container
from quo.label import Label

content = Label("Hello, World", fg='black', bg='red')
container(content)

[image: _images/label.png]
To make it fullscreen set :param:`bind` and :param:`full_screen` to True Press Ctrl-C to quit

from quo import container
from quo.label import Label

content = Label("<fg='black' bg='red'>Hello, World</style>")
container(content, bind=True, full_screen=True)

[image: _images/label-fullscreen.png]
Adding a custom key binder

from quo import container
from quo.keys import bind
from quo.label import Label

content = Label("<fg='black' bg='red'>Hello, World</style>")

#Press Ctrl-a to exit
@bind.add("ctrl-a")
def _(event):
 event.app.exit()

container(content, bind=True, full_screen=True)

TextField

A simple input field.
This is a higher level abstraction on top of several other classes with sane defaults.

This widget does have the most common options, but it does not intend to cover every single use case.

Parameters
- text (str) - The initial text.
- prompt (Optional[TextFieldFormattedText, str]) - Prompt. ie <blue>What is your name?</blue>
- multiline (bool) - If True, allow multiline input.
- completer - Completer instance for auto completion.
- complete_while_typing - Boolean.
- accept_handler - Called when Enter is pressed (This should be a callable that takes a buffer as input).
- history - History instance.
- auto_suggest - AutoSuggest instance for input suggestions.
- hide (bool) - When True, display using asterisks.
- focusable (bool) - When True, allow this widget to receive the focus.
- focus_on_click (bool) - When True, focus after mouse click.
- input_processors - None or a list of Processor objects.
- type - None or a Validator object.
- highlighter - Lexer instance for syntax highlighting.
- wrap_lines (bool) - When True, don’t scroll horizontally, but wrap lines.
- width - Window width. (Dimension object.)
- height - Window height. (Dimension object.)
- scrollbar (bool) - When True, display a scroll bar.
- fg (Optional[str]) - A foregound color string.
- bg (Optional[str]) - A background color string.
- fixed_width (bool) - When True, don’t take up more width than the preferred width reported by the control.
- fixed_height (bool) - When True, don’t take up more width than the preferred height reported by the control.
- get_line_prefix - None or a callable that returns formatted text to be inserted before a line. It takes a line number (int) and a wrap_count and returns formatted text. This can be used for implementation of line continuations, things like Vim “breakindent” and so on.

Other attributes

	search_field - An optional SearchToolbar object.

Button

Clickable button.

	Parameters
	
	text - The caption for the button.

	handler - None or callable. Called when the button is clicked. No parameters are passed to this callable. Use for instance Python’s functools.partial to pass parameters to this callable if needed.

	width - Width of the button.

Shadow

Draw a shadow underneath/behind this container. (This applies `class:shadow` the the cells under the shadow. The Style should define the colors for the shadow.)

	Parameters
	
	body - Another container object.

Utilities

Screen Clearing

To clear the terminal screen, you can use the quo.clear() function. It does what the name suggests: it clears the entire visible screen in a platform-agnostic way:

from quo import clear

clear()

Getting Characters from Terminal(getchar)

Normally, when reading input from the terminal, you would read from
standard input. However, this is buffered input and will not show up until
the line has been terminated. In certain circumstances, you might not want
to do that and instead read individual characters as they are being written.

For this, Quo provides the getchar() function which reads a single
character from the terminal buffer and returns it as a Unicode character.

Note that this function will always read from the terminal, even if stdin
is instead a pipe.

from quo import getchar

gc = getchar()

if gc == 'y':
 print('We will go on')
elif gc == 'n':
 print('Abort!')

Note that this reads raw input, which means that things like arrow keys
will show up in the platform’s native escape format. The only characters
translated are ^C and ^D which are converted into keyboard
interrupts and end of file exceptions respectively. This is done because
otherwise, it’s too easy to forget about that and to create scripts that
cannot be properly exited.

Exitting

Quo has a low-level exit that skips Python’s cleanup and speeds up exit by about 10ms for things like shell completion.
Parmameters

	code (str) - Exit code.

from quo import exit

exit(1)

Waiting for Key Press(pause)

Sometimes, it’s useful to pause until the user presses any key on the
keyboard.

In quo, this can be accomplished with the quo.pause() function. This
function will print a quick message to the terminal (which can be
customized) and wait for the user to press a key. In addition to that,
it will also become a NOP (no operation instruction) if the script is not
run interactively.

	Parameters
	
	info (Optional[str]) – The message to print before pausing. Defaults to “Press any key to proceed >> ..”.

from quo import pause

pause()

Exception(Error) Handling

Quo internally uses exceptions to signal various error conditions that
the user of the application might have caused. Primarily this is things
like incorrect usage.

Where are Errors Handled?

Quo’s main error handling is happening in BaseCommand.main(). In
there it handles all subclasses of Outlier as well as the standard EOFError and KeyboardInterrupt exceptions. The
latter are internally translated into a Abort.

The logic applied is the following:

	If an EOFError or KeyboardInterrupt happens, reraise it
as Abort.

	If an Outlier is raised, invoke the
Outlier.show() method on it to display it and then exit
the program with Outlier.exit_code.

	If an Abort exception is raised print the string Aborted!
to standard error and exit the program with exit code 1.

	if it goes through well, exit the program with exit code 0.

Which Exceptions Exist?

Quo has two exception bases: Outlier which is raised for
all exceptions that quo wants to signal to the user and Abort
which is used to instruct quo to abort the execution.

A Outlier has a show() method which
can render an error message to stderr or the given file object. If you
want to use the exception yourself for doing something check the API docs
about what else they provide.

The following common subclasses exist:

	UsageError to inform the user that something went wrong.

	BadParameter to inform the user that something went wrong with
a specific parameter. These are often handled internally in quo and
augmented with extra information if possible. For instance if those
are raised from a callback quo will automatically augment it with
the parameter name if possible.

	FileError this is an error that is raised by the FileType if quo encounters issues opening the file.

	ValidationError if quo encounters issues validating an input.

Text User Interface (Full screen Command-line applications)

quo can be used to create complex full screen terminal
applications. Typically, an application consists of a layout (to describe the
graphical part) and a set of key bindings.

The sections below describe the components required for full screen
applications (or custom, non full screen applications), and how to assemble
them together.

Note

Also remember that the examples directory of the quo
repository contains plenty of examples. Each example is supposed to explain
one idea. So, this as well should help you get started.

Don’t hesitate to open a GitHub issue if you feel that a certain example is
missing.

A simple application

Almost every quo application is an instance of an container(). The simplest full screen example would look like this:

from quo import container
from quo.label import Label

content = Label("Hello, world")

container(content)

This will only consume the least amount of space required.

Note

If we set the full_screen option, the application will run in an alternate screen buffer, in full screen mode.

Starting with v2022.4.5, ctrl-c will be the default key binder for to exit the app, you will still be able to define your own set of key bindings.

from quo import container
from quo.textfield import TextField

content = TextField("Hello, world")
container(content, bind=True, full_screen=True)

An application consists of several components. The most important are:

	I/O objects: the input and output device.

	The layout: this defines the graphical structure of the application. For
instance, a text box on the left side, and a button on the right side.

	A style: this defines what colors and underline/bold/italic styles are used
everywhere.

	A set of key bindings.

We will discuss all of these in more detail below.

The layout

Under the hood, class Layout is the layout for function container().

	Here’s a simple example of a a text area displaying Hello World!

from quo import container
from quo.box imort Box
from quo.textfield TextField

Layout for displaying hello world.
(The box takes care of the margin/padding.)

textfield = TextField("Hello, world!!")

content = Box(textfield)

container(content, bind=True, full_screen=True)

[image: _images/box-and-textfield.png]
In the example above, the Layout consists of Box and TextField for displaying hello world.

The class Box takes care of the margin/padding and class TextField takes care of the text to be printed.
quo.container() prints the layout.

container

Print the layout to the output

	Parameters
	
	container - AnyContainer

	bind (bool) - When True, initiate a Bind instance for the key bindings.

	full_screen (bool) - When True, run the application on the alternate screen buffer.

	focused_element - element to be focused initially. (Can be anything the `focus` function accepts.)

	mouse_support - Filter or boolean. When True, enable mouse support.

	style - A style string.

Here’s a simple example of a few buttons and click handlers.

[image: _images/click-handlers.png]
» Source code here [https://github.com/scalabli/quo/tree/master/examples/fullscreen/click-handlers.py]

A layered layout architecture

There are several ways to create a layout, depending on how
customizable you want things to be.

Examples of Container objects are
VSplit (vertical split),
HSplit (horizontal split)

Window object is a special kind of
container that can contain objects responsible
for the generation of content. The
Window object acts as an adaptor between the
UIControl and other containers, but it’s also
responsible for the scrolling and line wrapping of the content.

	Quo contains several widgets like:
	Button,
Frame,
Label,
TextField,

	The highest level abstractions can be found in the dialog module.

More complex layouts can be achieved by nesting multiple
VSplit,
HSplit

HSplit

Several layouts, one stacked above/under the other. like so:

+--------------------+
| |
+--------------------+
| |
+--------------------+

By default, this doesn’t display a horizontal line between the children, but if this is something you need, then create a HSplit as follows:

HSplit(subset=[...], padding_char='-', padding=1, padding_style='fg:red')

Parameters

	subset - List of child Container objects.

	window_too_small - A Container object that is displayed if there is not enough space for all the subsets. By default, this is a “Window too small” message.

	align - A VerticalAlign value. i.e top, center, bottom or justify

	width - When given, use this width instead of looking at the subsets.

	height - When given, use this height instead of looking at the subsets.

	z_index- (int or None) When specified, this can be used to bring element in front of floating elements. None means: inherit from parent.

	style - A style string.

	modal (bool) - Setting modal=True makes what is called a modal container. Normally, a subset container would inherit its parent key bindings. This does not apply to modal containers.

	bind - None or a Bind object.

	padding - (Dimension or int), size to be used for the padding. - padding_char - Character to be used for filling in the padding.

	padding_style - Style to applied to the padding.

from quo import container
from quo.layout import HSplit
from quo.window import Window
from quo.label import Label

1. The layout
content = HSplit([
 Label("\n\n(Top pane)"),
 Window(height=1, char="-"), # Horizontal line in the middle.
 Label("\n\n(Bottom pane)")
])

2. The `Application`
Press `ctrl-c` to exit
container(content, bind=True)

VSplit

Several layouts, one stacked left/right of the other like so:

+---------+----------+
| | |
| | |
+---------+----------+

By default, this doesn’t display a vertical line between the children, but if this is something you need, then create a VSplit as follows:

VSplipt([...], padding_char='|', padding=1, padding_style='fg:blue')

	Parameters
	
	subset - List of subsets Container objects.

	window_too_small - A Container object that is displayed if there is not enough space for all the children. By default, this is a “Window too small” message.

	align- A HorizontalAlign value. i.e left, centre, right or justify

	width - When given, use this width instead of looking at the subsets.

	height - When given, use this height instead of looking at the subsets.

	z_index - (int or None) When specified, this can be used to bring element in front of floating elements. None means: inherit from parent.

	style - A style string.

	modal (bool) - Setting modal=True makes what is called a modal container. Normally, a subset container would inherit its parent key bindings. This does not apply to modal containers.

	bind - None or a Bind object.

	padding - (Dimension or int), size to be used for the padding.

	padding_char - Character to be used for filling in the padding.

	padding_style - Style to applied to the padding.

Press `ctrl-c` to exit
from quo import container
from quo.label import Label
from quo.layout import VSplit
from quo,window import Window

1. The layout
content = VSplit([
 Label("(Left pane)"),
 Window(width=1, char="|"), # Vertical line in the middle.
 Label("(Right pane)")
])

container(content, bind=True, full_screen=True)

Key bindings

Global key bindings

Key bindings can be passed to the application as follows:

from quo import container
from quo.keys import bind

container(bind=True)

Registering Key bindings

To register a new keyboard shortcut, we can use the
add() method as a decorator of the key handler:

from quo import container
from quo.keys import bind
from quo.textfield import TextField

content = TextField("Hello, world")

A custom Key binder to exit the application
@bind.add("ctrl-q")
def exit_(event):
 """
 Pressing "ctrl-q" will exit the user interface
 """
 event.app.exit()

container(content, bind=True, full_screen=True)

The callback function is named exit_ for clarity, but it could have been named _ (underscore) as well, or anything you see fit

Read more about key bindings [https://quo.readthedocs.io/en/latest/kb.html]

VSplit and HSplit take a modal argument.

Setting modal=True makes what is called a modal container. Normally, a child container would inherit its parent key bindings. This does not apply to modal containers.

Consider a modal container (e.g. VSplit)
is child of another container, its parent. Any key bindings from the parent are not taken into account if the modal container (subset) has the focus.

This is useful in a complex layout, where many controls have their own key bindings, but you only want to enable the key bindings for a certain region of the layout.

The global key bindings are always active.

Window

Window is a Container that wraps a UIControl, like a BufferControl or FormattedTextControl.

	Parameters
	
	content - UIControl instance.

	width - Dimension instance or callable.

	height - Dimension instance or callable.

	z_index - When specified, this can be used to bring element in front of floating elements.

	fixed_width (bool) - When True, don’t take up more width then the preferred width reported by the control.

	fixed_height (bool) - When True, don’t take up more width then the preferred height reported by the control.

	ignore_content_width (bool) - A bool or Filter instance. Ignore the UIContent width when calculating the dimensions.

	ignore_content_height (bool) - A bool or Filter instance. Ignore the UIContent height when calculating the dimensions.

	left_margins - A list of Margin instance to be displayed on the left. For instance: NumberedMargin can be one of them in order to show line numbers.

	right_margins - Like left_margins, but on the other side.

	scroll_offsets - ScrollOffsets instance, representing the preferred amount of lines/columns to be always visible before/after the cursor. When both top and bottom are a very high number, the cursor will be centered vertically most of the time.

	allow_scroll_beyond_bottom (bool) - A bool or Filter instance. When True, allow scrolling so far, that the top part of the content is not visible anymore, while there is still empty space available at the bottom of the window. In the Vi editor for instance, this is possible. You will see tildes while the top part of the body is hidden.

	wrap_lines (bool)* - A bool or Filter instance. When True, don’t scroll horizontally, but wrap lines instead.

	get_vertical_scroll - Callable that takes this window instance as input and returns a preferred vertical scroll. (When this is `None`, the scroll is only determined by the last and current cursor position.)

	get_horizontal_scroll - Callable that takes this window instance as input and returns a preferred vertical scroll.

	always_hide_cursor (bool) - A bool or Filter instance. When True, never display the cursor, even when the user control specifies a cursor position.

	cursorline (bool) - A bool or Filter instance. When True, display a cursorline.

	cursorcolumn (bool) - A bool or Filter instance When True, display a cursorcolumn.

	colorcolumns - A list of ColorColumn instances that describe the columns to be highlighted, or a callable that returns such a list.

	align - WindowAlign value or callable that returns an WindowAlign value. alignment of content. i.e left, centre or right

	style - A style string. Style to be applied to all the cells in this window. (This can be a callable that returns a string.)

	char (str) - Character to be used for filling the background. This can also be a callable that returns a character.

	get_line_prefix - None or a callable that returns formatted text to atted text to be inserted before a line. It takes a line number (int) and a wrap_count and returns formatted text. This can be used for implementation of line continuations, things like Vim “breakindent”.

» Check out more examples here [https://github.com/scalabli/quo/tree/master/examples/fullscreen/]

Key binding 🗝️

A key binding is an association between a physical key on a keyboard and a parameter. A parameter can have any number of key bindings associated with it, and a particular key binding can control any number of parameters.

Note

This page contains a couple of extra notes about key bindings.

Key bindings can be defined by importing quo.keys.bind() which is an instance of Bind

from quo.keys import bind

@bind.add('a')
def _(event):
 " Do something if 'a' has been pressed. "
 ...

@bind.add('ctrl-t')
def _(event):
 " Do something if Control-T has been pressed. "
 ...

Note

ctrl-q (control-q) and ctrl-s (control-s) are often captured by the terminal, because they were used traditionally for software flow control.
When this is enabled, the application will automatically freeze when
ctrl-s is pressed, until ctrl-q is pressed. It won’t be possible to bind these keys.

In order to disable this, execute the following command in your shell, or even
add it to your .bashrc.

stty -ixon

Key bindings can even consist of a sequence of multiple keys. The binding is only triggered when all the keys in this sequence are pressed.

@bind.add('q', 'u', 'o')
def _(start):
 " Do something if 'q' is pressed, then 'u' and then 'o' is pressed. "
 ...

If the user presses only q, then nothing will happen until either a second
key (like u or o) has been pressed or until the timeout expires.

List of special keys

Besides literal characters, any of the following keys can be used in a key
binding:

	Name

	Possible keys

	Escape
Shift + escape

	escape
s-escape

	Arrows

	left,
right,
up,
down

	Navigation

	home,
end,
delete,
pageup,
pagedown,
insert

	Control+letter

	ctrl-a, ctrl-b, ctrl-c,
ctrl-d, ctrl-e, ctrl-f,
ctrl-g, ctrl-h, cttl-i,
ctrl-j, ctrl-k, ctrl-l,

ctrl-m, ctrl-n, ctrl-o,
ctrl-p, ctrl-q, ctrl-r,
ctrl-s, ctrl-t, ctrl-u,
ctrl-v, ctrl-w, ctrl-x,

ctrl-y, ctrl-z

	Control + number

	ctrl-1, ctrl-2, ctrl-3,
ctrl-4, ctrl-5, ctrl-6,
ctrl-7, ctrl-8, ctrl-9,
ctrl-0

	Control + arrow

	ctrl-left,
ctrl-right,
ctrl-up,
ctrl-down

	Other control
keys

	ctrl-@,
ctrl-\,
ctrl-],
ctrl-^,
ctrl-_,
ctrl-delete

	Shift + arrow

	s-left,
s-right,
s-up,
s-down

	Control + Shift +
arrow

	c-s-left,
c-s-right,
c-s-up,
c-s-down

	Other shift
keys

	s-delete,
s-tab

	F-keys

	f1, f2, f3,
f4, f5, f6,
f7, f8, f9,
f10, f11, f12,

f13, f14, f15,
f16, f17, f18,
f19, f20, f21,
f22, f23, f24

There are a couple of useful aliases as well:

	ctrl-h | backspace

	ctrl-@ | ctrl-space

	ctrl-m | enter

	ctrl-i | tab

Note

Note that the supported keys are limited to what typical VT100 terminals
offer. Binding ctrl-7 (control + number 7) for instance is not
supported.

Binding alt+something, option+something or meta+something

Vt100 terminals translate the alt key into a leading escape key.
For instance, in order to handle alt-f, we have to handle
escape + f. Notice that we receive this as two individual keys.
This means that it’s exactly the same as first typing escape and then
typing f. Something this alt-key is also known as option or meta.

In code that looks as follows:

@bind.add('escape', 'f')
def _(event):
 " Do something if alt-f or meta-f have been pressed. "

Wildcards

Sometimes you want to catch any key that follows after a certain key stroke.
This is possible by binding the ‘<any>’ key:

@bind.add('a', '<any>')
def _(start):
 ...

This will handle aa, ab, ac, etcetera. The key binding can check the
event object for which keys exactly have been pressed.

Attaching a Condition to key bindings

In order to enable a key binding according to a certain condition, we have to
pass it to Condition instance. (Read more about filters.)

import datetime
from quo.filters import Condition
from quo.keys import bind

@Condition
def is_active():
 " Only activate key binding on the second half of each minute. "
 return datetime.datetime.now().second > 30

@bind.add('ctrl-t', filter=is_active)
def _(event):
 # ...
 pass

The key binding will be ignored when this condition is not satisfied.

ConditionalKeyBindings: Disabling a set of key bindings

Sometimes you want to enable or disable a whole set of key bindings according to a certain condition. This is possible by wrapping it in a
ConditionalKeyBindings object.

from quo.filters import Condition
from quo.keys ConditionalKeyBindings

@Condition
def is_active():
 " Only activate key binding on the second half of each minute. "
 return datetime.datetime.now().second > 30

 bindings = ConditionalKeyBindings(
 bind=my_bindings,
 filter=is_active)

If the condition is not satisfied, all the key bindings in my_bindings above will be ignored.

Merging key bindings

Sometimes you have different parts of your application generate a collection of
key bindings. It is possible to merge them together through the
merge_key_bindings() function. This is preferred above passing a Bind object around and having everyone populate it.

from quo.keys import merge_key_bindings

bindings = merge_key_bindings([
 bindings1,
 bindings2,
])

Eager

Usually not required, but if ever you have to override an existing key binding,
the eager flag can be useful.

Suppose that there is already an active binding for ab and you’d like to add
a second binding that only handles a. When the user presses only a,
quo has to wait for the next key press in order to know which
handler to call.

By passing the eager flag to this second binding, we are actually saying that quo shouldn’t wait for longer matches when all the keys in this key binding are matched. So, if a has been pressed, this second binding will be called, even if there’s an active ab binding.

@bind.add('a', 'b')
def binding_1(event):
 ...

@bind.add('a', eager=True)
def binding_2(event):
 ...

This is mainly useful in order to conditionally override another binding.

Asyncio coroutines

Key binders handlers can be asyncio coroutines.

@bind.add('x')
async def print_hello(event):
 """
 Pressing 'x' will print 5 times "hello" in the background above the
 prompt.
 """
 for i in range(5):
 # Print hello above the current prompt.
 print("Hello")

 # Sleep, but allow further input editing in the meantime.
 await asyncio.sleep(1)

If the user accepts the input on the prompt, while this coroutine is not yet
finished , an asyncio.CancelledError exception will be thrown in this
coroutine.

Timeouts

There are two timeout settings that effect the handling of keys.

	Application.ttimeoutlen: Like Vim’s ttimeoutlen option.
When to flush the input (For flushing escape keys.) This is important on
terminals that use vt100 input. We can’t distinguish the escape key from for
instance the left-arrow key, if we don’t know what follows after “x1b”. This
little timer will consider “x1b” to be escape if nothing did follow in this
time span. This seems to work like the ttimeoutlen option in Vim.

	KeyProcessor.timeoutlen: like Vim’s timeoutlen option.
This can be None or a float. For instance, suppose that we have a key
binding AB and a second key binding A. If the uses presses A and then waits,
we don’t handle this binding yet (unless it was marked ‘eager’), because we
don’t know what will follow. This timeout is the maximum amount of time that
we wait until we call the handlers anyway. Pass None to disable this
timeout.

Recording macros

Both Emacs and Vi mode allow macro recording. By default, all key presses are
recorded during a macro, but it is possible to exclude certain keys by setting
the record_in_macro parameter to False:

@bind.add('ctrl-t', record_in_macro=False)
def _(event):
 # ...
 pass

Creating new Vi text objects and operators

We tried very hard to ship prompt_toolkit with as many as possible Vi text
objects and operators, so that text editing feels as natural as possible to Vi
users.

If you wish to create a new text object or key binding, that is actually
possible. Check the custom-vi-operator-and-text-object.py example for more
information.

License📜

MIT License

[image: Licence:MIT]Copyright (c) 2021 Gerrishon Sirere

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Changelog

[image: _images/changelog.png]
[image: _images/giphy.gif]
Version 2023.5.1

Realeased On 2023-04-30

Added

	Added :param:`frame_color` to Frame.

Version 2023.5 Whimsical Walrus

Realeased On 2023-04-28

Added

	Added :param:`bold` to Label.

	Added :param:`italic` to Label.

	Added :param:`underline` to Label.

	Added :param:`fg` to Label.

	Added :param:`bg` to Label.

	Added :param:`bg` to Box.

Version 2023.4

Realeased On 2023-04-27

Added

	Added :param:`fixed_height` and :param:`fixed_width` to Label

	Added Progressbar as an alias of quo.progress.ProgressBar

Version 2023.3

Released On 2023-03-30

Added

	Added :param:`lines` to quo.rule.Rule

	Added :param:``spinner` to :obj:``quo.progress.ProgressBar`

Fixed

	Fixed Label

	Fixed Window

Version 2023.2

Released On 2023-03-23

Added

	Added :param:`fg` and bg to quo.color.Color()

Version 2023.1

Released On 2023-03-22

Added

	Added Bar

	Added Rule

	Added Table

Changed

	Deprecated quo.console.Console.bar()

	Deprecated quo.console.Console.rule()

	Deprecated :param:`fmt` in quo.print()

	Deprecated quo.table.Table()

Version 2022.9

Released 0n 2022-10-17

Added

	Added Highlight for syntax highlighting

	Added Parser for parsing arguments

Changed

	Deprecated quo.console.app(), quo.console.arg() and quo.console.command() in favor of quo.parse.Parser

	Deprecated several syntax highlighters in favor of Highlight

Version 2022.8.1

Released on 2022-08-21

Changed

	Renamed :param:`animated` in quo.console.Console.rule to :param:`multicolored`

Version 2022.8

Released on 2022-08-20

Added

	Added :param:`animated` to quo.console.Console.rule

Version 2022.7

Released on 2022-08-19

Added

	Added :param:`fmt` to quo.console.Console.bar

Version 2022.6.1

Released on 2022-06-12

	Optimised quo.console.Console.bell

Version 2022.6

Released on 2022-06-12

	Deprecated clipboard

	Optimized help paramater

Version 2022.5.3

Released on 2022-05-14

	Under the hood optimizations.

Version 2022.5.2

Released on 2022-05-08

Added

	Added quo.color.Color()

Version 2022.5.1

Released on 2022-05-07

Fixed

	Fixed SpinningWheel attribute error.

Version 2022.5

Released on 2022-05-01

Added

	Added quo.console.Console.spin()

	Added :param:`column_width` and :param:`headers` to quo.table.Table()

	Added :param:`suggest` to quo.prompt.Prompt

Version 2022.4.5`

Released on 2022-04-23

Added

	Added :param:`case_sensitive` to quo.completion.WordCompleter

Changed

	Renamed quo.console.Console.openfile() to open()

Version 2022.4.4

Released on 2022-04-21

Added

	Added :param:`int` to quo.prompt.Prompt

	Added continuation() to quo.prompt.Prompt

Version 2022.4.3

Released on 2022-04-18

Added

	Added :param:`style` to quo.table.Table()

Version 2022.4.2

Released on 2022-04-16

Changed

	Under the hood optimization of class quo.progress.ProgressBar

Version 2022.4.1

Released on 2022-04-14

Fixed

Version 2022.4

Released on 2022-04-01

Added

	Added quo.console.Console.pager()

	Added :param:`fmt` to quo.print()

	Added :param:`bg` to all dialog boxes.

	Added :param:`multiline` to quo.dialog.InputBox()

	Added TextField as an aliase to TextArea

Version 2022.3.5

Released on 2022-03-19

Changed

	Optimized quo.print()

Version 2022.3.4

Released on 2022-03-18

Added

	Added :param:`bind` to quo.container()

	Added :param:`focused_element` to quo.container()

	Added :param:`full_screen` to quo.container()

	Added :param:`mouse_support` to quo.container()

	Added :param:`refresh` to quo.container()

	Added quo.keys.bind() as an instance of quo.keys.Bind

	Added quo.console.console() as an instance of quo.console.Console

Version 2022.3.3

Released on 2022-03-16

Changed

	Optimized :param:`align` in quo.layout.Window, quo.layout.HSplit and quo.layout.VSplit

Version 2022.3.2

Released on 2022-3-14

Added

	Added quo.console.Console.bar()

	Added qquo.console.Console.rule()

Changed

	Deprecated :param:`.run()` in the Dialog UI.

Version 2022.3.1

Released on 2022-3-12

Added

	Added :param:`ul` as an alias of :param:`underline` for Style.

Version 2022.3

Released on 2022-3-6

Added

	Added key binder <any> enabling the user to press any key to exit the help page.

	Introduced quo.keys.Bind as an alias of quo.keys.KeyBinder

Changed

	Changed :param:`enable_system_elicit` in favor of :param:`system_prompt`.

	Changed :param:`enable_suspend` in favor of :param:`suspend`.

Fixed

	Optimized the help page.

	Fixed Deprecated notice TypeError

Version 2022.2.2

Released on 2022-2-2

Added

	Added quo.console.command()

	Added quo.console.app()

	Added quo.console.arg()

	Added quo.console.tether()

	Added highlighters : Actionscript, Arrow, Bibtex, Cpp, Css, Email, Fortran, Go, Haskell, HTML, Javascript, Julia, Perl, Php, Python, Ruby, Rust, Shell, Solidity, Sql

Fixed

	Under the hood optimizations.

Version 2022.2.1

Released on 2022-2-25

Changed

	Deprecated :param:`is_password` in favor of :param:`hide`

Fixed

	Fixed quo.Console.edit(), quo.Console.openfile(), quo.Console.encoding()

Version 2022.2

Released on 2022-2-16

Added

	Added quo.Console.edit()

	Added quo.Console.launch()

	Added quo.Console.size()

	Added quo.Console.encoding()

	Added quo.Console.bell() - Added quo.Console.rule()

	Added quo.Console.openfile()

	Added quo.types.integer()

Changed

	Deprecated :param:`password` in favor of :param:`hide`

	Deprecated quo.text.HTML in favor of quo.text.Text

	Deprecated :param:`r_elicit` in favor of :param:`rprompt`

	Deprecated quo.Suite in favor of quo.console.Console

	Deprecated :param:`validator` in favor of :param:`type`

	Dropped support for python < 3.8

Fixed

	Full support for Windows

Version 2022.1.6

Released on 2022-1-17

	Under the hood optimizations

	Introduced quo.dialog.MessageBox(), quo.dialog.PromptBox(), quo.dialog.RadiolistBox(), quo.dialog.ConfirmBox(), quo.dialog.CheckBox(), quo.dialog.ChoiceBox() widgets for displaying formatted text in a window.

Version 2022.1.5

Released on 2022-1-11

Fixed

	ImportError: :issue:`37` affecting Windows OS

Version 2022.1

Released on 2022-1-11

Changed

	Dependency update :issue:`32` to :issue:`35`

Fixed

	Unexpected argument in quo.prompt() :issue:`36`

Version 2021.7

Released on 2021-12-25

Changed

	Deprecated :param:`foreground` and :param:`background`` in favor of :param:`fg` and :param:`bg`

Fixed

	Fixed broken placeholder() issue :issue:`30`

Version 2021.6

Released on 2021-11-20

Added

	Added Support of a placeholder text that is displayed as long as no input is given.

Version 2021.5.5.2

Released on 2021-09-28

Fixed

	Pypi README fix

Version 2021.5.5

Released on 2021-09-2

Added

	Added support for tabular presentation of data.

	Added support for colorful error messages.

	Added :param:`ul` to quo.echo(). Can be used as a substitute for :param:`underline` parameter.

	Added :param:`strike`` to quo.echo()

	Added a :param:`hidded` to quo.echo()

Version 2021.4.5

Released on 2021-08-22

Added

	Intoduced quo.clipboard.InMemoryClipboard class to copy and paste data flawlessly.

Version 2021.3.5

Released on 2021-07-19

Added

	Added :param:`fg` and :param:`bg` as an alias of :param:`foreground` and :param:`background`.

	Added quo.progress.ProgressBar class.

	Added quo.text.HTML for easy text formating.

Changed

	Fixed changelong link on PyPI.

	Fixed wcwidth dependancy issue :issue:`18`

Version 2021.2

Released on 2021-06-28

	Under the hood optimizations.

Version 2021.1

Released on 2021-06-18

Added

	Added support for ANSI colors for better coloring of the terminal

	Added support for RGB tuples of three integers

Version 2021.1.dev0

Released on 2021-01-10

	Proof of concept/Initial release.

Appendix

	ECHO ANSI COLORS

	Available Syntax highlighters

ECHO ANSI COLORS

List of ANSI colors supported by quo.echo()

	black (might be a gray)

	red

	green

	yellow (might be an orange)

	blue

	magenta

	cyan

	white (might be light gray)

	vblack vibrant black

	vblue

	vmagenta

	vwhite

	vcyan

	vred

	vgreen

	vyellow

Available Syntax highlighters

	CSS

	Email

	Fortran

	Go

	Haskell

	HTML

	Python

	Ruby

	Rust

	Shell

	Solidity

	Sql

Index

 Page not found

Unfortunately we couldn't find the content you were looking for.

Apps

Apps can be added to commands using the quo.console.app() decorator.

Apps in quo are profoundly configurable and ought not to be mistaken for positional arguments.

How to name Apps

For the purpose of uniformity, a name is chosen in the following order

	In the event that a name is not prefixed, therefore it is used as the Python argument name

2. If there is at least one name prefixed with – the first one given is used as the name.
To get the Python argument name, the chosen name is converted to lower
case, up to two dashes are removed as the prefix, and other dashes are
converted to underscores.

Note

Apps are given as position arguments to the decorator.

from quo import print
from quo.console import app
from quo.console import command

@command()
@app('-s', '--string-to-echo')
def echo(string_to_echo):
 print(string_to_echo)

from quo import print
from quo.console import app
from quo.console import command

@command()
@app('-s', '--string-to-echo', 'string')
def echo(string):
 print(string)

	"-f", "--foo-bar", the name is foo_bar

	"-x", the name is x

	"-f", "--filename", "dest", the name is dest

	"--CamelCase", the name is camelcase

	"-f", "--fb", the name is f

	"-f", "--foo-bar", the name is f

Basic Value Apps

The most basic app is a value app. These apps accept one
argument which is a value. If no type is provided, the type of the default
value is used. If no default value is provided, the type is assumed to be
STRING. Unless a name is explicitly specified, the name of the
parameter is the first long option defined; otherwise the first short one is
used. By default, apps are not required, however to make an app required,
simply pass in required=True as an argument to the decorator.

from quo import print
from quo.console import app
from quo.console import command

@command()
@app('-n', default=1)
def dots(n):
 print('.' * n)

How to make an app required
from quo import print
from quo.console import app
from quo.console import command

@command()
@app('-n', required=True, type=int)
def dots(n):
 print('.' * n)

How to use a Python reserved word such as `from` as a parameter
from quo import print
from quo.console import app
from quo.console import command

@command()
@app('--from', '-f', '--from_')
@app('--to', '-t')
def reserved_param_name(from_, to):
 print(f"from {from_} to {to}")

In this case the app is of type INT because the default value
is an integer.

To show the default values when showing command help, use show_default=True

from quo import print
from quo.console import app
from quo.console import command

@command()
@app('-n', default=1, show_default=True)
def dots(n):
 print('.' * n)

Multi Value Apps

Sometimes, you have apps that take more than one arg. For apps,
only a fixed number of arguments is supported. This can be configured by
the nargs parameter. The values are then stored as a tuple.

from quo import print
from quo.console import app
from quo.console import command

@command()
@app('--pos', nargs=2, type=float)
def findme(pos):
 a, b = pos
 print(f"{a} / {b}")

Tuples as Multi Value Apps

As you can see that by using nargs set to a specific number each item in
the resulting tuple is of the same type. This might not be what you want.
Commonly you might want to use different types for different indexes in
the tuple. For this you can directly specify a tuple as type:

from quo import print
from quo.console import app, command

@command()
@app('--item', type=(str, int))
def putitem(item):
 name, id = item
 print(f"name={name} id={id}")

By using a tuple literal as type, nargs gets automatically set to the
length of the tuple and the quo.types.Tuple type is automatically
used. The above example is thus equivalent to this:

from quo import print
from quo.console import app, command
from quo.types import Tuple

@quo.command()
@quo.app('--item', nargs=2, type=Tuple([str, int]))
def putitem(item):
 name, id = item
 print(f"name={name} id={id}")

Multiple Apps

Similarly to nargs, there is also the case of wanting to support a
parameter being provided multiple times and have all the values recorded –
not just the last one. For instance, git commit -m foo -m bar would
record two lines for the commit message: foo and bar. This can be
accomplished with the multiple flag:

Example:

from quo import print
from quo.console import app, command

@command()
@app('--message', '-m', multiple=True)
def commit(message):
 print('\n'.join(message))

When passing a default with multiple=True, the default value
must be a list or tuple, otherwise it will be interpreted as a list of
single characters.

@app("--format", multiple=True, default=["json"])

Counting

In some very rare circumstances, it is interesting to use the repetition
of apps to count an integer up. This can be used for verbosity flags,
for instance:

from quo import print
from quo.console import app, command

@command()
@app('-v', '--verbose', count=True)
def log(verbose):
 print(f"Verbosity: {verbose}")

Boolean Flags

Boolean flags are apps that can be enabled or disabled. This can be
accomplished by defining two flags in one go separated by a slash (/)
for enabling or disabling the app. (If a slash is in an app string,
quo automatically knows that it’s a boolean flag and will pass
is_flag=True.) quo always wants you to provide an enable
and disable flag so that you can change the default later.

Example:

import sys
from quo import print
from quo.console import app, command

@command()
@app('--shout/--no-shout', default=False)
def info(shout):
 rv = sys.platform
 if shout:
 rv = rv.upper() + '!!!!111'
 print(rv)

If you really don’t want an off-switch, you can just define one and
manually inform quo that something is a flag:

import sys
from quo import print
from quo.console import app, command

@command()
@app('--shout', is_flag=True)
def info(shout):
 rv = sys.platform
 if shout:
 rv = rv.upper() + '!!!!111'
 print(rv)

Note that if a slash is contained in your app already (for instance, if
you use Windows-style parameters where / is the prefix character), you
can alternatively split the parameters through ; instead:

from quo import print
from quo.console import app, command

@command()
@app('/debug;/no-debug')
def log(debug):
 print(f"debug={debug}")

if __name__ == '__main__':
 log()

If you want to define an alias for the second apo only, then you will
need to use leading whitespace to disambiguate the format string:

Example:

import sys
from quo import print
from quo.console import app, command

@command()
@app('--shout/--no-shout', ' /-S', default=False)
def info(shout):
 rv = sys.platform
 if shout:
 rv = rv.upper() + '!!!!111'
 print(rv)

Feature Switches

In addition to boolean flags, there are also feature switches. These are
implemented by setting multiple apps to the same parameter name and
defining a flag value. Note that by providing the flag_value parameter,
quo will implicitly set is_flag=True.

To set a default flag, assign a value of True to the flag that should be
the default.

import sys
from quo import print
from quo.console import app, command

@command()
@app('--upper', 'transformation', flag_value='upper',default=True)
@app('--lower', 'transformation', flag_value='lower')
def info(transformation):
 print(getattr(sys.platform, transformation)())

Choice Apps

Sometimes, you want to have a parameter be a choice of a list of values.
In that case you can use Choice type. It can be instantiated
with a list of valid values. The originally passed choice will be returned,
not the str passed on the command line. Token normalization functions and
case_sensitive=False can cause the two to be different but still match.

Example:

from quo import print
from quo.console import app, command
from quo.types import Choice

@command()
@qapp('--hash-type', type=Choice(['MD5', 'SHA1'], case_sensitive=False))
def digest(hash_type):
 print(hash_type)

Only pass the choices as list or tuple. Other iterables (like
generators) may lead to unexpected results.

Choices work with apps that have multiple=True. If a default
value is given with multiple=True, it should be a list or tuple of
valid choices.

Choices should be unique after considering the effects of
case_sensitive and any specified token normalization function.

Prompting

In some cases, you want parameters that can be provided from the command line,
but if not provided, ask for user input instead. This can be implemented with
quo by defining a prompt string.

Example:

from quo import print
from quo.console import app, command

@command()
@app('--name', prompt=True)
def hello(name):
 print(f"Hello {name}!")

If you are not happy with the default prompt string, you can ask for
a different one:

from quo import print
from quo.console import app, command

@command()
@app('--name', prompt='Your name please')
def hello(name):
 print(f"Hello {name}!")

It is advised that prompt not be used in conjunction with the multiple
flag set to True. Instead, prompt in the function interactively.

By default, the user will be prompted for an input if one was not passed
through the command line. To turn this behavior off, see
Optional Value.

Password Prompts

quo also supports hidden prompts and asking for confirmation. This is
useful for password input:

import codecs
from quo import print
from quo.console import app, command

@command()
@app("--password", prompt=True, hide=True, affirm==True)
def encode(password):
 print(f"encoded: {codecs.encode(password, 'rot13')}")

Dynamic Defaults for Prompts

The auto_envvar_prefix and default_map apps for the context
allow the program to read option values from the environment or a
configuration file. However, this overrides the prompting mechanism, so
that the user does not get the app to change the value interactively.

If you want to let the user configure the default value, but still be
prompted if the app isn’t specified on the command line, you can do so
by supplying a callable as the default value. For example, to get a default
from the environment:

import os
from quo import print
from quo.console import app, command

@command()
@app("--username", prompt= True, default=lambda: os.environ.get("USER", ""))
def hello(username):
 print(f"Hello, {username}!")

To describe what the default value will be, set it in show_default.

import os
from quo import print
from quo.console import app, command

@command()
@app("--username", prompt=True, default=lambda: os.environ.get("USER", ""), show_default="current user")
def hello(username):
 print(f"Hello, {username}!")

Callbacks and Eager Apps

Sometimes, you want a parameter to completely change the execution flow.
For instance, this is the case when you want to have a --version
parameter that prints out the version and then exits the application.

In such cases, you need two concepts: eager parameters and a callback. An
eager parameter is a parameter that is handled before others, and a
callback is what executes after the parameter is handled. The eagerness
is necessary so that an earlier required parameter does not produce an
error message. For instance, if --version was not eager and a
parameter --foo was required and defined before, you would need to
specify it for --version to work. For more information, see
callback-evaluation-order.

A callback is a function that is invoked with two parameters: the current
Clime and the value. The context provides some useful features
such as quitting the application and gives access to other already
processed parameters.

Here an example for a --version flag:

from quo import print
from quo.console import app, command

def print_version(clime, param, value):
if not value or clime.parse:
return
print('Version 1.0')
 clime.exit()

@command()
@app('--version', is_flag=True, callback=print_version, expose_value=False, is_eager=True)
def hello():
 print('Hello World!')

The expose_value parameter prevents the pretty pointless version
parameter from being passed to the callback. If that was not specified, a
boolean would be passed to the hello script. The parse
flag is applied to the context if quo wants to parse the command line
without any destructive behavior that would change the execution flow. In
this case, because we would exit the program, we instead do nothing.

Yes Parameters

For dangerous operations, it’s very useful to be able to ask a user for
confirmation. This can be done by adding a boolean --yes flag and
asking for confirmation if the user did not provide it and to fail in a
callback:

from quo import echo
from quo.console import app, command

def abort_if_false(clime, param, value):
 if not value:
 clime.abort()

@command()
@app('--yes', is_flag=True, callback=abort_if_false, expose_value=False, prompt='Are you sure you want to drop the db?')
def dropdb():
 echo('Dropped all tables!')

Values from Environment Variables

A very useful feature of quo is the ability to accept parameters from
environment variables in addition to regular parameters. This allows
tools to be automated much easier. For instance, you might want to pass
a configuration file with a --config parameter but also support exporting
a TOOL_CONFIG=hello.cfg key-value pair for a nicer development
experience.

This is supported by quo in two ways. One is to automatically build
environment variables which is supported for apps only. To enable this
feature, the auto_envvar_prefix parameter needs to be passed to the
script that is invoked. Each command and parameter is then added as an
uppercase underscore-separated variable. If you have a subcommand
called run taking an app called reload and the prefix is
WEB, then the variable is WEB_RUN_RELOAD.

Example usage:

from quo import echo
from quo.console import app, command

@command()
@app('--username')
def greet(username):
 echo(f'Hello {username}!')

if __name__ == '__main__':
 greet(auto_envvar_prefix='GREETER')

When using auto_envvar_prefix with command groups, the command name
needs to be included in the environment variable, between the prefix and
the parameter name, i.e. PREFIX_COMMAND_VARIABLE. If you have a
subcommand called run-server taking an app called host and
the prefix is WEB, then the variable is WEB_RUN_SERVER_HOST.

Example:

from quo import echo
from quo.console import app, tether

@tether()
@app('--debug/--no-debug')
def cli(debug):
 echo(f"Debug mode is {'on' if debug else 'off'}")

@cli.command()
@app('--username')
def greet(username):
 echo(f"Hello {username}!")

if __name__ == '__main__':
 cli(auto_envvar_prefix='GREETER')

The second option is to manually pull values in from specific environment
variables by defining the name of the environment variable on the app.

Example usage:

from quo import echo
from quo.console import app, command

@command()
@app('--username', envvar='USERNAME')
def greet(username):
 echo(f"Hello {username}!")

if __name__ == '__main__':
 greet()

In that case it can also be a list of different environment variables
where the first one is picked.

Multiple Values from Environment Values

As apps can accept multiple values, pulling in such values from
environment variables (which are strings) is a bit more complex. The way
quo solves this is by leaving it up to the type to customize this
behavior. For both multiple and nargs with values other than
1, quo will invoke the ParamType.split_envvar_value() method to
perform the splitting.

The default implementation for all types is to split on whitespace. The
exceptions to this rule are the quo.types.File and quo.types.Path types
which both split according to the operating system’s path splitting rules.
On Unix systems like Linux and OS X, the splitting happens for those on
every colon (:), and for Windows, on every semicolon (;).

Example usage:

from quo import echo
from quo.console import app, command
from quo.types import Path

@command()
@app('paths', '--path', envvar='PATHS', multiple=True, type=Path())
def perform(paths):
 for path in paths:
 echo(path)

if __name__ == '__main__':
 perform()

Other Prefix Characters

quo can deal with alternative prefix characters other than -- for
apps. This is for instance useful if you want to handle slashes as
parameters / or something similar.

from quo import echo
from quo.console import app, command

@command()
@app('+w/-w')
def chmod(w):
 echo(f"writable={w}")

if __name__ == '__main__':
 chmod()

Note that if you are using / as prefix character and you want to use a
boolean flag you need to separate it with ; instead of /:

from quo import echo
from quo.console import app, command

@command()
@app('/debug;/no-debug')
def log(debug):
 echo(f"debug={debug}")

if __name__ == '__main__':
 log()

Range Apps

The IntRange type extends the INT type to ensure the
value is contained in the given range. The FloatRange type does
the same for FLOAT.

If min or max is omitted, that side is unbounded. Any value in
that direction is accepted. By default, both bounds are closed, which
means the boundary value is included in the accepted range. min_open
and max_open can be used to exclude that boundary from the range.

If clamp mode is enabled, a value that is outside the range is set
to the boundary instead of failing. For example, the range 0, 5
would return 5 for the value 10, or 0 for the value -1.
When using FloatRange, clamp can only be enabled if both
bounds are closed (the default).

from quo import echo
from quo.console import app, command
from quo.types import IntRange

@command()
@app("--count", type= IntRange(0, 20, clamp=True))
@app("--digit", type= IntRange(0, 9))
def repeat(count, digit):
 echo(str(digit) * count)

Callbacks for Validation

If you want to apply custom validation logic, you can do this in the
parameter callbacks. These callbacks can both modify values as well as
raise errors if the validation does not work. The callback runs after
type conversion. It is called for all sources, including prompts.

from quo import echo
from quo.console import app, command
from quo.types import BadParameter, UNPROCESSED

def validate_rolls(clime, param, value):
 if isinstance(value, tuple):
 return value

 try:
 rolls, _, dice = value.partition("d")
 return int(dice), int(rolls)
 except ValueError:
 raise BadParameter("format must be 'NdM'")

@command()
@app("--rolls", type = UNPROCESSED, callback=validate_rolls, default="1d6", prompt=True)
def roll(rolls):
 sides, times = rolls
 echo(f"Rolling a {sides}-sided dice {times} time(s)")

Optional Value

Providing the value to an app can be made optional, in which case
providing only the app’s flag without a value will either show a
prompt or use its flag_value.

Setting is_flag=False, flag_value=value tells quo that the app
can still be passed a value, but if only the flag is given the
flag_value is used.

from quo import print
from quo.console import app
from quo.console import command

@command()
@app("--name", is_flag=False, flag_value="Flag", default="Default")
def hello(name):
 print(f"Hello, {name}!")

If the app has prompt enabled, then setting
prompt_required=False tells quo to only show the prompt if the
app’s flag is given, instead of if the app is not provided at all.

from quo import print
from quo.console import app, command

@command()
@app('--name', prompt=True, prompt_required=False, default="Default")
def hello(name):
 print(f"Hello {name}!")

If required=True, then the option will still prompt if it is not
given, but it will also prompt if only the flag is given.

Args

Args work similarly to apps but are positional.
They also only support a subset of the features ofapps due to their syntactical nature.

Basic Args

The most basic option is a simple string arg of one value. If no
type is provided, the type of the default value is used, and if no default
value is provided, the type is assumed to be STRING.

from quo import echo
from quo.console import arg, command

@command()
@arg('filename')
def touch(filename):
 """Print FILENAME."""
 echo(filename)

Variadic Args

The second most common version is variadic args where a specific (or
unlimited) number of args is accepted. This can be controlled with
the nargs parameter. If it is set to -1, then an unlimited number
of args is accepted.

The value is then passed as a tuple. Note that only one argument can be
set to nargs=-1, as it will eat up all args.

Example

from quo import echo
from quo.console import arg, command

@command()
@arg('src', nargs=-1)
@arg('dst', nargs=1)
def copy(src, dst):
 """Move file SRC to DST."""
 for fn in src:
 echo(f"move {fn} to folder {dst}")

Note that this is not how you would write this application. The reason
for this is that in this particular example the arguments are defined as
strings. Filenames, however, are not strings! They might be on certain
operating systems, but not necessarily on all. For better ways to write
this, see the next sections.

File Arguments

Since all the examples have already worked with filenames, it makes sense
to explain how to deal with files properly. Command line tools are more
fun if they work with files the Unix way, which is to accept - as a
special file that refers to stdin/stdout.

quo supports this through the quo.types.File type which handles files for you. It also deals with Unicode and bytes.

Example:

from quo.console import arg, command
from quo.types import File

@command()
@arg('input', type=File('rb'))
@arg('output', type=File('wb'))
def inout(input, output):
 """Copy contents of INPUT to OUTPUT."""
 while True:
 chunk = input.read(1024)
 if not chunk:
 break
 output.write(chunk)

File Path Args

In the previous example, the files were opened immediately. But what if
we just want the filename? The naïve way is to use the default string
argument type. However, remember that quo is Unicode-based, so the string
will always be a Unicode value. Unfortunately, filenames can be Unicode or
bytes depending on which operating system is being used. As such, the type
is insufficient.

Instead, you should be using the Path type, which automatically
handles this ambiguity. Not only will it return either bytes or Unicode
depending on what makes more sense, but it will also be able to do some
basic checks for you such as existence checks.

Example:

from quo import echo, formatfilename
from quo.console import arg, command
from quo.types import Path

@command()
@arg('filename', type=Path(exists=True))
def touch(filename):
 """Print FILENAME if the file exists."""
 echo(formatfilename(filename))

File Opening Safety

The FileType type has one problem it needs to deal with, and that
is to decide when to open a file. The default behavior is to be
“intelligent” about it. What this means is that it will open stdin/stdout
and files opened for reading immediately. This will give the user direct
feedback when a file cannot be opened, but it will only open files
for writing the first time an IO operation is performed by automatically
wrapping the file in a special wrapper.

This behavior can be forced by passing lazy=True or lazy=False to
the constructor. If the file is opened lazily, it will fail its first IO
operation by raising an FileError.

Since files opened for writing will typically immediately empty the file,
the lazy mode should only be disabled if the developer is absolutely sure
that this is intended behavior.

Forcing lazy mode is also very useful to avoid resource handling
confusion. If a file is opened in lazy mode, it will receive a
close_intelligently method that can help figure out if the file
needs closing or not. This is not needed for parameters, but is
necessary for manually prompting with the prompt() function as you
do not know if a stream like stdout was opened (which was already open
before) or a real file that needs closing.

It is also possible to open files in atomic mode by passing atomic=True. In atomic mode, all writes go into a separate
file in the same folder, and upon completion, the file will be moved over to
the original location. This is useful if a file regularly read by other
users is modified.

Environment Variables

Like apps, args can also grab values from an environment variable.
Unlike apps, however, this is only supported for explicitly named
environment variables.

Example usage:

from quo import echo
from quo.console import arg, command
from quo.types import File

@command()
@arg('src', envvar='SRC', type=File('r'))
def echo(src):
 """Print value of SRC environment variable."""
 echo(src.read())

In that case, it can also be a list of different environment variables
where the first one is picked.

Generally, this feature is not recommended because it can cause the user
a lot of confusion.

App-Like Args

Sometimes, you want to process args that look like apps. For
instance, imagine you have a file named -foo.txt. If you pass this as
an arg in this manner, quo will treat it as an app.

To solve this, quo does what any POSIX style command line script does,
and that is to accept the string -- as a separator for options and
arguments. After the -- marker, all further parameters are accepted as
args.

Example usage:

from quo import echo
from quo.console import arg, command
from quo.types import Path

@command()
@arg('files', nargs=-1, type=Path())
def touch(files):
 """Print all FILES file names."""
 for filename in files:
 echo(filename)

If you don’t like the - marker, you can set ignore_unknown_apps to
True to avoid checking unknown apps:

from quo import echo
from quo.console import arg, command
from quo.types import Path

@command(context_settings={"ignore_unknown_options": True})
@arg('files', nargs=-1, type=Path())
def touch(files):
 """Print all FILES file names."""
 for filename in files:
 echo(filename)

Asking for input (prompts)

This page is about building prompts. Pieces of code that we can embed in a
program for asking the user for input. Even if you want to use prompt_toolkit
for building full screen terminal applications, it is probably still a good
idea to read this first, before heading to the building full screen
applications page.

In this page, we will cover autocompletion, syntax highlighting, key bindings,
and so on.

Hello world

The following snippet is the most simple example, it uses the
prompt() function to ask the user for input
and returns the text. Just like (raw_)input.

from prompt_toolkit import prompt

text = prompt('Give me some input: ')
print('You said: %s' % text)

[image: ../images/hello-world-prompt.png]
What we get here is a simple prompt that supports the Emacs key bindings like
readline, but further nothing special. However,
prompt() has a lot of configuration options.
In the following sections, we will discover all these parameters.

The PromptSession object

Instead of calling the prompt() function, it’s
also possible to create a PromptSession
instance followed by calling its
prompt() method for every input
call. This creates a kind of an input session.

from prompt_toolkit import PromptSession

Create prompt object.
session = PromptSession()

Do multiple input calls.
text1 = session.prompt()
text2 = session.prompt()

This has mainly two advantages:

	The input history will be kept between consecutive
prompt() calls.

	The PromptSession() instance and its
prompt() method take about the
same arguments, like all the options described below (highlighting,
completion, etc…). So if you want to ask for multiple inputs, but each
input call needs about the same arguments, they can be passed to the
PromptSession() instance as well, and they
can be overridden by passing values to the
prompt() method.

Syntax highlighting

Adding syntax highlighting is as simple as adding a lexer. All of the Pygments [http://pygments.org/] lexers can be used after wrapping them in a
PygmentsLexer. It is also possible to create a
custom lexer by implementing the Lexer abstract
base class.

from pygments.lexers.html import HtmlLexer
from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.lexers import PygmentsLexer

text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer))
print('You said: %s' % text)

[image: ../images/html-input.png]
The default Pygments colorscheme is included as part of the default style in
prompt_toolkit. If you want to use another Pygments style along with the lexer,
you can do the following:

from pygments.lexers.html import HtmlLexer
from pygments.styles import get_style_by_name
from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.styles.pygments import style_from_pygments_cls

style = style_from_pygments_cls(get_style_by_name('monokai'))
text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer), style=style,
 include_default_pygments_style=False)
print('You said: %s' % text)

We pass include_default_pygments_style=False, because otherwise, both
styles will be merged, possibly giving slightly different colors in the outcome
for cases where where our custom Pygments style doesn’t specify a color.

Colors

The colors for syntax highlighting are defined by a
Style instance. By default, a neutral
built-in style is used, but any style instance can be passed to the
prompt() function. A simple way to create a
style, is by using the from_dict()
function:

from pygments.lexers.html import HtmlLexer
from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style
from prompt_toolkit.lexers import PygmentsLexer

our_style = Style.from_dict({
 'pygments.comment': '#888888 bold',
 'pygments.keyword': '#ff88ff bold',
})

text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer),
 style=our_style)

The style dictionary is very similar to the Pygments styles dictionary,
with a few differences:

	The roman, sans, mono and border options are ignored.

	The style has a few additions: blink, noblink, reverse and noreverse.

	Colors can be in the #ff0000 format, but they can be one of the built-in
ANSI color names as well. In that case, they map directly to the 16 color
palette of the terminal.

Read more about styling.

Using a Pygments style

All Pygments style classes can be used as well, when they are wrapped through
style_from_pygments_cls().

Suppose we’d like to use a Pygments style, for instance
pygments.styles.tango.TangoStyle, that is possible like this:

Creating a custom style could be done like this:

from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style, style_from_pygments_cls, merge_styles
from prompt_toolkit.lexers import PygmentsLexer

from pygments.styles.tango import TangoStyle
from pygments.lexers.html import HtmlLexer

our_style = merge_styles([
 style_from_pygments_cls(TangoStyle),
 Style.from_dict({
 'pygments.comment': '#888888 bold',
 'pygments.keyword': '#ff88ff bold',
 })
])

text = prompt('Enter HTML: ', lexer=PygmentsLexer(HtmlLexer),
 style=our_style)

Coloring the prompt itself

It is possible to add some colors to the prompt itself. For this, we need to
build some formatted text. One way of doing this is by
creating a list of style/text tuples. In the following example, we use class
names to refer to the style.

from prompt_toolkit.shortcuts import prompt
from prompt_toolkit.styles import Style

style = Style.from_dict({
 # User input (default text).
 '': '#ff0066',

 # Prompt.
 'username': '#884444',
 'at': '#00aa00',
 'colon': '#0000aa',
 'pound': '#00aa00',
 'host': '#00ffff bg:#444400',
 'path': 'ansicyan underline',
})

message = [
 ('class:username', 'john'),
 ('class:at', '@'),
 ('class:host', 'localhost'),
 ('class:colon', ':'),
 ('class:path', '/user/john'),
 ('class:pound', '# '),
]

text = prompt(message, style=style)

[image: ../images/colored-prompt.png]
The message can be any kind of formatted text, as discussed here. It can also be a callable that returns some formatted text.

By default, colors are taken from the 256 color palette. If you want to have
24bit true color, this is possible by adding the
color_depth=ColorDepth.TRUE_COLOR option to the
prompt() function.

from prompt_toolkit.output import ColorDepth

text = prompt(message, style=style, color_depth=ColorDepth.TRUE_COLOR)

Autocompletion

Autocompletion can be added by passing a completer parameter. This should
be an instance of the Completer abstract
base class. WordCompleter is an example of
a completer that implements that interface.

from prompt_toolkit import prompt
from prompt_toolkit.completion import WordCompleter

html_completer = WordCompleter(['<html>', '<body>', '<head>', '<title>'])
text = prompt('Enter HTML: ', completer=html_completer)
print('You said: %s' % text)

WordCompleter is a simple completer that
completes the last word before the cursor with any of the given words.

[image: ../images/html-completion.png]

Note

Note that in prompt_toolkit 2.0, the auto completion became synchronous. This
means that if it takes a long time to compute the completions, that this
will block the event loop and the input processing.

For heavy completion algorithms, it is recommended to wrap the completer in
a ThreadedCompleter in order to run it
in a background thread.

Nested completion

Sometimes you have a command line interface where the completion depends on the
previous words from the input. Examples are the CLIs from routers and switches.
A simple WordCompleter is not enough in
that case. We want to to be able to define completions at multiple hierarchical
levels. NestedCompleter solves this issue:

from prompt_toolkit import prompt
from prompt_toolkit.completion import NestedCompleter

completer = NestedCompleter.from_nested_dict({
 'show': {
 'version': None,
 'clock': None,
 'ip': {
 'interface': {'brief'}
 }
 },
 'exit': None,
})

text = prompt('# ', completer=completer)
print('You said: %s' % text)

Whenever there is a None value in the dictionary, it means that there is no
further nested completion at that point. When all values of a dictionary would
be None, it can also be replaced with a set.

A custom completer

For more complex examples, it makes sense to create a custom completer. For
instance:

from prompt_toolkit import prompt
from prompt_toolkit.completion import Completer, Completion

class MyCustomCompleter(Completer):
 def get_completions(self, document, complete_event):
 yield Completion('completion', start_position=0)

text = prompt('> ', completer=MyCustomCompleter())

A Completer class has to implement a
generator named get_completions()
that takes a Document and yields the current
Completion instances. Each completion
contains a portion of text, and a position.

The position is used for fixing text before the cursor. Pressing the tab key
could for instance turn parts of the input from lowercase to uppercase. This
makes sense for a case insensitive completer. Or in case of a fuzzy completion,
it could fix typos. When start_position is something negative, this amount
of characters will be deleted and replaced.

Styling individual completions

Each completion can provide a custom style, which is used when it is rendered
in the completion menu or toolbar. This is possible by passing a style to each
Completion instance.

from prompt_toolkit.completion import Completer, Completion

class MyCustomCompleter(Completer):
 def get_completions(self, document, complete_event):
 # Display this completion, black on yellow.
 yield Completion('completion1', start_position=0,
 style='bg:ansiyellow fg:ansiblack')

 # Underline completion.
 yield Completion('completion2', start_position=0,
 style='underline')

 # Specify class name, which will be looked up in the style sheet.
 yield Completion('completion3', start_position=0,
 style='class:special-completion')

The “colorful-prompts.py” example uses completion styling:

[image: ../images/colorful-completions.png]
Finally, it is possible to pass formatted text for the
display attribute of a Completion. This
provides all the freedom you need to display the text in any possible way. It
can also be combined with the style attribute. For instance:

from prompt_toolkit.completion import Completer, Completion
from prompt_toolkit.formatted_text import HTML

class MyCustomCompleter(Completer):
 def get_completions(self, document, complete_event):
 yield Completion(
 'completion1', start_position=0,
 display=HTML('completion<ansired>1</ansired>'),
 style='bg:ansiyellow')

Fuzzy completion

If one possible completions is “django_migrations”, a fuzzy completer would
allow you to get this by typing “djm” only, a subset of characters for this
string.

Prompt_toolkit ships with a FuzzyCompleter
and FuzzyWordCompleter class. These provide
the means for doing this kind of “fuzzy completion”. The first one can take any
completer instance and wrap it so that it becomes a fuzzy completer. The second
one behaves like a WordCompleter wrapped
into a FuzzyCompleter.

Complete while typing

Autcompletions can be generated automatically while typing or when the user
presses the tab key. This can be configured with the complete_while_typing
option:

text = prompt('Enter HTML: ', completer=my_completer,
 complete_while_typing=True)

Notice that this setting is incompatible with the enable_history_search
option. The reason for this is that the up and down key bindings would conflict
otherwise. So, make sure to disable history search for this.

Asynchronous completion

When generating the completions takes a lot of time, it’s better to do this in
a background thread. This is possible by wrapping the completer in a
ThreadedCompleter, but also by passing the
complete_in_thread=True argument.

text = prompt('> ', completer=MyCustomCompleter(), complete_in_thread=True)

Input validation

A prompt can have a validator attached. This is some code that will check
whether the given input is acceptable and it will only return it if that’s the
case. Otherwise it will show an error message and move the cursor to a given
position.

A validator should implements the Validator
abstract base class. This requires only one method, named validate that
takes a Document as input and raises
ValidationError when the validation fails.

from prompt_toolkit.validation import Validator, ValidationError
from prompt_toolkit import prompt

class NumberValidator(Validator):
 def validate(self, document):
 text = document.text

 if text and not text.isdigit():
 i = 0

 # Get index of first non numeric character.
 # We want to move the cursor here.
 for i, c in enumerate(text):
 if not c.isdigit():
 break

 raise ValidationError(message='This input contains non-numeric characters',
 cursor_position=i)

number = int(prompt('Give a number: ', validator=NumberValidator()))
print('You said: %i' % number)

[image: ../images/number-validator.png]
By default, the input is validated in real-time while the user is typing, but
prompt_toolkit can also validate after the user presses the enter key:

prompt('Give a number: ', validator=NumberValidator(),
 validate_while_typing=False)

If the input validation contains some heavy CPU intensive code, but you don’t
want to block the event loop, then it’s recommended to wrap the validator class
in a ThreadedValidator.

Validator from a callable

Instead of implementing the Validator
abstract base class, it is also possible to start from a simple function and
use the from_callable() classmethod.
This is easier and sufficient for probably 90% of the validators. It looks as
follows:

from prompt_toolkit.validation import Validator
from prompt_toolkit import prompt

def is_number(text):
 return text.isdigit()

validator = Validator.from_callable(
 is_number,
 error_message='This input contains non-numeric characters',
 move_cursor_to_end=True)

number = int(prompt('Give a number: ', validator=validator))
print('You said: %i' % number)

We define a function that takes a string, and tells whether it’s valid input or
not by returning a boolean.
from_callable() turns that into a
Validator instance. Notice that setting the
cursor position is not possible this way.

History

A History object keeps track of all the
previously entered strings, so that the up-arrow can reveal previously entered
items.

The recommended way is to use a
PromptSession, which uses an
InMemoryHistory for the entire session by
default. The following example has a history out of the box:

from prompt_toolkit import PromptSession

session = PromptSession()

while True:
 session.prompt()

To persist a history to disk, use a FileHistory
instead of the default
InMemoryHistory. This history object can be
passed either to a PromptSession or to the
prompt() function. For instance:

from prompt_toolkit import PromptSession
from prompt_toolkit.history import FileHistory

session = PromptSession(history=FileHistory('~/.myhistory'))

while True:
 session.prompt()

Auto suggestion

Auto suggestion is a way to propose some input completions to the user like the
fish shell [http://fishshell.com/].

Usually, the input is compared to the history and when there is another entry
starting with the given text, the completion will be shown as gray text behind
the current input. Pressing the right arrow → or c-e will insert
this suggestion, alt-f will insert the first word of the suggestion.

Note

When suggestions are based on the history, don’t forget to share one
History object between consecutive
prompt() calls. Using a
PromptSession does this for you.

Example:

from prompt_toolkit import PromptSession
from prompt_toolkit.history import InMemoryHistory
from prompt_toolkit.auto_suggest import AutoSuggestFromHistory

session = PromptSession()

while True:
 text = session.prompt('> ', auto_suggest=AutoSuggestFromHistory())
 print('You said: %s' % text)

[image: ../images/auto-suggestion.png]
A suggestion does not have to come from the history. Any implementation of the
AutoSuggest abstract base class can be
passed as an argument.

Adding a bottom toolbar

Adding a bottom toolbar is as easy as passing a bottom_toolbar argument to
prompt(). This argument be either plain text,
formatted text or a callable that returns plain or
formatted text.

When a function is given, it will be called every time the prompt is rendered,
so the bottom toolbar can be used to display dynamic information.

The toolbar is always erased when the prompt returns.
Here we have an example of a callable that returns an
HTML object. By default, the toolbar
has the reversed style, which is why we are setting the background instead
of the foreground.

from prompt_toolkit import prompt
from prompt_toolkit.formatted_text import HTML

def bottom_toolbar():
 return HTML('This is a <style bg="ansired">Toolbar</style>!')

text = prompt('> ', bottom_toolbar=bottom_toolbar)
print('You said: %s' % text)

[image: ../images/bottom-toolbar.png]
Similar, we could use a list of style/text tuples.

from prompt_toolkit import prompt
from prompt_toolkit.styles import Style

def bottom_toolbar():
 return [('class:bottom-toolbar', ' This is a toolbar. ')]

style = Style.from_dict({
 'bottom-toolbar': '#ffffff bg:#333333',
})

text = prompt('> ', bottom_toolbar=bottom_toolbar, style=style)
print('You said: %s' % text)

The default class name is bottom-toolbar and that will also be used to fill
the background of the toolbar.

Adding a right prompt

The prompt() function has out of the box
support for right prompts as well. People familiar to ZSH could recognise this
as the RPROMPT option.

So, similar to adding a bottom toolbar, we can pass an rprompt argument.
This can be either plain text, formatted text or a
callable which returns either.

from prompt_toolkit import prompt
from prompt_toolkit.styles import Style

example_style = Style.from_dict({
 'rprompt': 'bg:#ff0066 #ffffff',
})

def get_rprompt():
 return '<rprompt>'

answer = prompt('> ', rprompt=get_rprompt, style=example_style)

[image: ../images/rprompt.png]
The get_rprompt function can return any kind of formatted text such as
HTML. it is also possible to pass text
directly to the rprompt argument of the
prompt() function. It does not have to be a
callable.

Vi input mode

Prompt-toolkit supports both Emacs and Vi key bindings, similar to Readline.
The prompt() function will use Emacs bindings by
default. This is done because on most operating systems, also the Bash shell
uses Emacs bindings by default, and that is more intuitive. If however, Vi
binding are required, just pass vi_mode=True.

from prompt_toolkit import prompt

prompt('> ', vi_mode=True)

Adding custom key bindings

By default, every prompt already has a set of key bindings which implements the
usual Vi or Emacs behaviour. We can extend this by passing another
KeyBindings instance to the
key_bindings argument of the prompt()
function or the PromptSession class.

An example of a prompt that prints 'hello world' when Control-T is pressed.

from prompt_toolkit import prompt
from prompt_toolkit.application import run_in_terminal
from prompt_toolkit.key_binding import KeyBindings

bindings = KeyBindings()

@bindings.add('c-t')
def _(event):
 " Say 'hello' when `c-t` is pressed. "
 def print_hello():
 print('hello world')
 run_in_terminal(print_hello)

@bindings.add('c-x')
def _(event):
 " Exit when `c-x` is pressed. "
 event.app.exit()

text = prompt('> ', key_bindings=bindings)
print('You said: %s' % text)

Note that we use
run_in_terminal() for the first key binding.
This ensures that the output of the print-statement and the prompt don’t mix
up. If the key bindings doesn’t print anything, then it can be handled directly
without nesting functions.

Enable key bindings according to a condition

Often, some key bindings can be enabled or disabled according to a certain
condition. For instance, the Emacs and Vi bindings will never be active at the
same time, but it is possible to switch between Emacs and Vi bindings at run
time.

In order to enable a key binding according to a certain condition, we have to
pass it a Filter, usually a
Condition instance. (Read more about
filters.)

from prompt_toolkit import prompt
from prompt_toolkit.filters import Condition
from prompt_toolkit.key_binding import KeyBindings

bindings = KeyBindings()

@Condition
def is_active():
 " Only activate key binding on the second half of each minute. "
 return datetime.datetime.now().second > 30

@bindings.add('c-t', filter=is_active)
def _(event):
 # ...
 pass

prompt('> ', key_bindings=bindings)

Dynamically switch between Emacs and Vi mode

The Application has an editing_mode
attribute. We can change the key bindings by changing this attribute from
EditingMode.VI to EditingMode.EMACS.

from prompt_toolkit import prompt
from prompt_toolkit.application.current import get_app
from prompt_toolkit.enums import EditingMode
from prompt_toolkit.key_binding import KeyBindings

def run():
 # Create a set of key bindings.
 bindings = KeyBindings()

 # Add an additional key binding for toggling this flag.
 @bindings.add('f4')
 def _(event):
 " Toggle between Emacs and Vi mode. "
 app = event.app

 if app.editing_mode == EditingMode.VI:
 app.editing_mode = EditingMode.EMACS
 else:
 app.editing_mode = EditingMode.VI

 # Add a toolbar at the bottom to display the current input mode.
 def bottom_toolbar():
 " Display the current input mode. "
 text = 'Vi' if get_app().editing_mode == EditingMode.VI else 'Emacs'
 return [
 ('class:toolbar', ' [F4] %s ' % text)
]

 prompt('> ', key_bindings=bindings, bottom_toolbar=bottom_toolbar)

run()

Read more about key bindings …

Using control-space for completion

An popular short cut that people sometimes use it to use control-space for
opening the autocompletion menu instead of the tab key. This can be done with
the following key binding.

kb = KeyBindings()

@kb.add('c-space')
def _(event):
 " Initialize autocompletion, or select the next completion. "
 buff = event.app.current_buffer
 if buff.complete_state:
 buff.complete_next()
 else:
 buff.start_completion(select_first=False)

Other prompt options

Multiline input

Reading multiline input is as easy as passing the multiline=True parameter.

from prompt_toolkit import prompt

prompt('> ', multiline=True)

A side effect of this is that the enter key will now insert a newline instead
of accepting and returning the input. The user will now have to press
Meta+Enter in order to accept the input. (Or Escape followed by
Enter.)

It is possible to specify a continuation prompt. This works by passing a
prompt_continuation callable to prompt().
This function is supposed to return formatted text, or
a list of (style, text) tuples. The width of the returned text should not
exceed the given width. (The width of the prompt margin is defined by the
prompt.)

from prompt_toolkit import prompt

def prompt_continuation(width, line_number, is_soft_wrap):
 return '.' * width
 # Or: return [('', '.' * width)]

prompt('multiline input> ', multiline=True,
 prompt_continuation=prompt_continuation)

[image: ../images/multiline-input.png]

Passing a default

A default value can be given:

from prompt_toolkit import prompt
import getpass

prompt('What is your name: ', default='%s' % getpass.getuser())

Mouse support

There is limited mouse support for positioning the cursor, for scrolling (in
case of large multiline inputs) and for clicking in the autocompletion menu.

Enabling can be done by passing the mouse_support=True option.

from prompt_toolkit import prompt

prompt('What is your name: ', mouse_support=True)

Line wrapping

Line wrapping is enabled by default. This is what most people are used to and
this is what GNU Readline does. When it is disabled, the input string will
scroll horizontally.

from prompt_toolkit import prompt

prompt('What is your name: ', wrap_lines=False)

Password input

When the is_password=True flag has been given, the input is replaced by
asterisks (* characters).

from prompt_toolkit import prompt

prompt('Enter password: ', is_password=True)

Prompt in an asyncio application

Note

New in prompt_toolkit 3.0. (In prompt_toolkit 2.0 this was possible using a
work-around).

For asyncio [https://docs.python.org/3/library/asyncio.html] applications,
it’s very important to never block the eventloop. However,
prompt() is blocking, and calling this would
freeze the whole application. Asyncio actually won’t even allow us to run that
function within a coroutine.

The answer is to call
prompt_async() instead of
prompt(). The async variation
returns a coroutines and is awaitable.

from prompt_toolkit import PromptSession
from prompt_toolkit.patch_stdout import patch_stdout

async def my_coroutine():
 session = PromptSession()
 while True:
 with patch_stdout():
 result = await session.prompt_async('Say something: ')
 print('You said: %s' % result)

The patch_stdout() context manager is
optional, but it’s recommended, because other coroutines could print to stdout.
This ensures that other output won’t destroy the prompt.

Reading keys from stdin, one key at a time, but without a prompt

Suppose that you want to use prompt_toolkit to read the keys from stdin, one
key at a time, but not render a prompt to the output, that is also possible:

import asyncio

from prompt_toolkit.input import create_input
from prompt_toolkit.keys import Keys

async def main() -> None:
 done = asyncio.Event()
 input = create_input()

 def keys_ready():
 for key_press in input.read_keys():
 print(key_press)

 if key_press.key == Keys.ControlC:
 done.set()

 with input.raw_mode():
 with input.attach(keys_ready):
 await done.wait()

if __name__ == "__main__":
 asyncio.run(main())

The above snippet will print the KeyPress object whenever a key is pressed.
This is also cross platform, and should work on Windows.

Commands and Tethers

This is implemented through the Command
and Tether (actually MultiCommand).

Callback Invocation

For a regular command, the callback is executed whenever the command runs.
If the script is the only command, it will always fire (unless a parameter
callback prevents it. This for instance happens if someone passes
--help to the script).

For tethers and multi commands, the situation looks different. In this case,
the callback fires whenever a subcommand fires (unless this behavior is
changed). What this means in practice is that an outer command runs
when an inner command runs:

from quo import echo
from quo.console import app, tether

@tether()
@app('@debug/@no-debug', default=False)
def cli(debug):
 echo(f"Debug mode is {'on' if debug else 'off'}")

@cli.command()
def sync():
 echo('Syncing')

Passing Parameters

quo strictly separates parameters between commands and subcommands. What this
means is that apps and args for a specific command have to be specified
after the command name itself, but before any other command names.

This behavior is already observable with the predefined --help option.
Suppose we have a program called tool.py, containing a subcommand called
sub.

	tool.py --help will return the help for the whole program (listing
subcommands).

	tool.py sub --help will return the help for the sub subcommand.

	But tool.py --help sub will treat --help as an arg for the main
program. quo then invokes the callback for --help, which prints the
help and aborts the program before quo can process the subcommand.

Nested Handling and Climes

As you can see from the earlier example, the basic command group accepts a
debug arg which is passed to its callback, but not to the sync
command itself. The sync command only accepts its own args.

This allows tools to act completely independent of each other, but how
does one command talk to a nested one? The answer to this is the
Clime.

Each time a command is invoked, a new context is created and linked with the
parent context. Normally, you can’t see these contexts, but they are
there. Contexts are passed to parameter callbacks together with the
value automatically. Commands can also ask for the context to be passed
by marking themselves with the pass_context() decorator. In that
case, the context is passed as first argument.

The context can also carry a program specified object that can be
used for the program’s purposes. What this means is that you can build a
script like this:

from quo import pass_context
from quo.console import app, tether

@tether()
@app('--debug/--no-debug', default=False)
@pass_context
def cli(clime, debug):
 # ensure that ctx.obj exists and is a dict (in case `cli()` is called
 # by means other than the `if` block below)
 clime.ensure_object(dict)

 clime.obj['DEBUG'] = debug

@cli.command()
@pass_context
def sync(clime):
 echo(f"Debug is {'on' if clime.obj['DEBUG'] else 'off'}")

if __name__ == '__main__':
 cli(obj={})

If the object is provided, each context will pass the object onwards to
its children, but at any level a context’s object can be overridden. To
reach to a parent, context.parent can be used.

In addition to that, instead of passing an object down, nothing stops the
application from modifying global state. For instance, you could just flip
a global DEBUG variable and be done with it.

Decorating Commands

As you have seen in the earlier example, a decorator can change how a
command is invoked. What actually happens behind the scenes is that
callbacks are always invoked through the Clime.invoke() method
which automatically invokes a command correctly (by either passing the
context or not).

This is very useful when you want to write custom decorators. For
instance, a common pattern would be to configure an object representing
state and then storing it on the context and then to use a custom
decorator to find the most recent object of this sort and pass it as first
argument.

For instance, the pass_obj() decorator can be implemented like this:

from functools import update_wrapper
from quo import pass_context

def pass_obj(f):
 @pass_context
 def new_func(clime, **args, **kwargs):
 return clime.invoke(f, clime.obj, *args, **kwargs)
 return update_wrapper(new_func, f)

The Clime.invoke() command will automatically invoke the function
in the correct way, so the function will either be called with f(clime,
obj) or f(obj) depending on whether or not it itself is decorated with
pass_context().

This is a very powerful concept that can be used to build very complex
nested applications; see complex-guide for more information.

Tether Invocation Without Command

By default, a tether or multi command is not invoked unless a subcommand is
passed. In fact, not providing a command automatically passes --help
by default. This behavior can be changed by passing
invoke_without_command=True to a group. In that case, the callback is
always invoked instead of showing the help page. The context object also
includes information about whether or not the invocation would go to a
subcommand.

Example:

from quo import echo, pass_context
from quo.console import tether

@tether(invoke_without_command=True)
@quo.pass_context
def cli(clime):
 if clime.invoked_subcommand is None:
 echo('I was invoked without subcommand')
 else:
 echo(f"I am about to invoke {clime.invoked_subcommand}")

@cli.command()
def sync():
 echo('The subcommand')

Merging Multi Commands

In addition to implementing custom multi commands, it can also be
interesting to merge multiple together into one script. While this is
generally not as recommended as it nests one below the other, the merging
approach can be useful in some circumstances for a nicer shell experience.

The default implementation for such a merging system is the
CommandCollection class. It accepts a list of other multi
commands and makes the commands available on the same level.

Example usage:

from quo import CommandCollection
from quo.console import tether, command

@tether()
def cli1():
 pass

@cli1.command()
def cmd1():
 """Command on cli1"""

@tether()
def cli2():
 pass

@cli2.command()
def cmd2():
 """Command on cli2"""

cli = CommandCollection(sources=[cli1, cli2])

if __name__ == '__main__':
 cli()

In case a command exists in more than one source, the first source wins.

Multi Command Chaining

Sometimes it is useful to be allowed to invoke more than one subcommand in
one go. For instance if you have installed a setuptools package before
you might be familiar with the setup.py sdist bdist_wheel
command chain which invokes sdist before bdist_wheel. This is very simple to implement.
All you have to do is to pass chain=True to your multicommand:

from quo import echo
from quo.console import command, tether

@tether(chain=True)
def cli():
 pass

@cli.command('sdist')
def sdist():
 echo('sdist called')

@cli.command('bdist_wheel')
def bdist_wheel():
 echo('bdist_wheel called')

When using multi command chaining you can only have one command (the last)
use nargs=-1 on an argument. It is also not possible to nest multi
commands below chained multicommands. Other than that there are no
restrictions on how they work. They can accept apps and args as
normal. The order between apps and args is limited for chained
commands. Currently only --apps args order is allowed.

Another note: the Clime.invoked_subcommand attribute is a bit
useless for multi commands as it will give '*' as value if more than
one command is invoked. This is necessary because the handling of
subcommands happens one after another so the exact subcommands that will
be handled are not yet available when the callback fires.

Note

It is currently not possible for chain commands to be nested. This
will be fixed in future versions of quo.

Multi Command Pipelines

A very common usecase of multi command chaining is to have one command
process the result of the previous command. There are various ways in
which this can be facilitated. The most obvious way is to store a value
on the context object and process it from function to function. This
works by decorating a function with pass_context() after which the
context object is provided and a subcommand can store its data there.

Another way to accomplish this is to setup pipelines by returning
processing functions. Think of it like this: when a subcommand gets
invoked it processes all of its parameters and comes up with a plan of
how to do its processing. At that point it then returns a processing
function and returns.

Where do the returned functions go? The chained multicommand can register
a callback with MultiCommand.resultcallback() that goes over all
these functions and then invoke them.

To make this a bit more concrete consider this example:

from quo import echo
from quo.console import app, tether
from quo.types import File

@tether(chain=True, invoke_without_command=True)
@app('-i', '--input', type=File('r'))
def cli(input):
 pass

@cli.resultcallback()
def process_pipeline(processors, input):
 iterator = (x.rstrip('\r\n') for x in input)
 for processor in processors:
 iterator = processor(iterator)
 for item in iterator:
 echo(item)

@cli.command('uppercase')
def make_uppercase():
 def processor(iterator):
 for line in iterator:
 yield line.upper()
 return processor

@cli.command('lowercase')
def make_lowercase():
 def processor(iterator):
 for line in iterator:
 yield line.lower()
 return processor

@cli.command('strip')
def make_strip():
 def processor(iterator):
 for line in iterator:
 yield line.strip()
 return processor

That’s a lot in one go, so let’s go through it step by step.

	The first thing is to make a quo.console.tether() that is chainable. In
addition to that we also instruct quo to invoke even if no
subcommand is defined. If this would not be done, then invoking an
empty pipeline would produce the help page instead of running the
result callbacks.

	The next thing we do is to register a result callback on our tether
This callback will be invoked with an arg which is the list of
all return values of all subcommands and then the same keyword
parameters as our group itself. This means we can access the input
file easily there without having to use the context object.

	In this result callback we create an iterator of all the lines in the
input file and then pass this iterator through all the returned
callbacks from all subcommands and finally we print all lines to
stdout.

After that point we can register as many subcommands as we want and each
subcommand can return a processor function to modify the stream of lines.

One important thing of note is that quo shuts down the context after
each callback has been run. This means that for instance file types
cannot be accessed in the processor functions as the files will already
be closed there. This limitation is unlikely to change because it would
make resource handling much more complicated. For such it’s recommended
to not use the file type and manually open the file through
openfile().

For a more complex example that also improves upon handling of the
pipelines have a look at the imagepipe multi command chaining demo [https://github.com/secretum-inc/quo/tree/maim/examples/imagepipe] in
the quo repository. It implements a pipeline based image editing tool
that has a nice internal structure for the pipelines.

Overriding Defaults

By default, the default value for a parameter is pulled from the
default flag that is provided when it’s defined, but that’s not the
only place defaults can be loaded from. The other place is the
Clime.default_map (a dictionary) on the context. This allows
defaults to be loaded from a configuration file to override the regular
defaults.

This is useful if you plug in some commands from another package but
you’re not satisfied with the defaults.

The default map can be nested arbitrarily for each subcommand:

default_map = {
 "debug": True, # default for a top level option
 "runserver": {"port": 5000} # default for a subcommand
}

The default map can be provided when the script is invoked, or
overridden at any point by commands. For instance, a top-level command
could load the defaults from a configuration file.

Example usage:

from quo import print
from quo.console import app, tether

@tether()
def cli():
 pass

@cli.command()
@app('--port', default=8000)
def runserver(port):
 print(f"Serving on http://127.0.0.1:{port}/")

if __name__ == '__main__':
 cli(default_map={
 'runserver': {
 'port': 5000
 }
 })

Clime Defaults

You can override defaults for contexts not just
when calling your script, but also in the decorator that declares a
command. For instance given the previous example which defines a custom
default_map this can also be accomplished in the decorator now.

This example does the same as the previous example:

from quo import print
from quo.console import app, tether

CONTEXT_SETTINGS = dict(
 default_map={'runserver': {'port': 5000}}
)

@tether(context_settings=CONTEXT_SETTINGS)
def cli():
 pass

@cli.command()
@app('@port', default=8000)
def runserver(port):
 print(f"Serving on http://127.0.0.1:{port}/")

if __name__ == '__main__':
 cli()

Command Return Values

Quo supports return values from command callbacks. This enables a whole range of features
that were previously hard to implement.

In essence any command callback can now return a value. This return value
is bubbled to certain receivers. One usecase for this has already been
show in the example of Multi Command Chaining where it has been
demonstrated that chained multi commands can have callbacks that process
all return values.

When working with command return values in quo, this is what you need to
know:

	The return value of a command callback is generally returned from the
BaseCommand.invoke() method. The exception to this rule has to
do with Tethers:

	In a tether, the return value is generally the return value of the
subcommand invoked. The only exception to this rule is that the
return value is the return value of the group callback if it’s
invoked without arguments and invoke_without_command is enabled.

	If a group is set up for chaining then the return value is a list
of all subcommands’ results.

	Return values of groups can be processed through a
MultiCommand.result_callback. This is invoked with the
list of all return values in chain mode, or the single return
value in case of non chained commands.

	The return value is bubbled through from the Clime.invoke()
and Clime.forward() methods. This is useful in situations
where you internally want to call into another command.

	quo does not have any hard requirements for the return values and
does not use them itself. This allows return values to be used for
custom decorators or workflows (like in the multi command chaining
example).

	When a quo script is invoked as command line application (through
BaseCommand.main()) the return value is ignored unless the
standalone_mode is disabled in which case it’s bubbled through.

Confirm

To ask if a user wants to continue with an action, the confirm() function comes in handy. By default, it returns the result of the prompt as a boolean value:

import quo

quo.confirm("Do you want to continue?")

echo

This function prints a message plus a newline to the given file or stdout. On first sight, this looks like the print function, but it has improved support for handling Unicode and binary data.

Supported color names:

	black (might be a gray)

	red

	green

	yellow (might be an orange)

	blue

	magenta

	cyan

	white (might be light gray)

	vblack vibrant black

	vblue

	vmagenta

	vwhite

	vcyan

	vred

	vgreen

	vyellow

RGB color codes

	Parameters
	
	text – the string to style with ansi codes.

	fg – if provided this will become the foreground color.

	bg – if provided this will become the background color.

	bold – if provided this will enable or disable bold mode.

	dim – if provided this will enable or disable dim mode.

	nl - if provided this will print a new line.

	ul or underline – if provided this will enable or disable underline

	italic - if provided this will print data in italics

	blink – if provided this will enable or disable blinking.

	strike -if provided this will print a strikethrough text

	hidden - if privided this will prevent the input from getting printed

	reverse – if provided this will enable or disable inverse rendering (foreground becomes background and the other way round).

	reset – by default a reset-all code is added at the end of the string which means that styles do not carry over. This can be disabled to compose styles.

Filters

Many places in quo require a boolean value that can change over
time. For instance:

	to specify whether a formatted text needs to be bold or in italic.

	to specify whether a part of the layout needs to be visible or not;

	or to decide whether a certain key binding needs to be active or not.

These booleans are often dynamic and can change at runtime. For instance, the
search toolbar should only be visible when the user is actually searching (when
the search buffer has the focus). The wrap_lines option could be changed
with a certain key binding. And that key binding could only work when the
default buffer got the focus.

In quo, we decided to reduce the amount of state in the whole
framework, and apply a simple kind of reactive programming to describe the flow
of these booleans as expressions. (It’s one-way only: if a key binding needs to
know whether it’s active or not, it can follow this flow by evaluating an
expression.)

The (abstract) base class is Filter, which
wraps an expression that takes no input and evaluates to a boolean. Getting the
state of a filter is done by simply calling it.

The most obvious way to create such a Filter
instance is by creating a Condition instance
from a function. For instance, the following condition will evaluate to True when the user is searching:

from quo.console import get_app
from quo.filters import Condition

@Condition
def is_searching():
 return get_app().is_searching

This filter can then be used in a key binding, like in the following snippet:»

from quo.keys import bind

@bind.add('ctrl-t', filter=is_searching)
def _(event):
 # Do, something, but only when searching.
 pass

If we want to know the boolean value of this filter, we have to call it like a function:

print(is_searching())

Built-in filters

There are many built-in filters, ready to use. All of them have a lowercase
name, because they represent the wrapped function underneath, and can be called
as a function.

	has_arg

	has_completions

	has_focus

	buffer_has_focus

	has_selection

	has_validation_error

	is_aborting

	is_done

	is_read_only

	is_multiline

	renderer_height_is_known

	in_editing_mode

	in_paste_mode

	vi_mode

	vi_navigation_mode

	vi_insert_mode

	vi_insert_multiple_mode

	vi_replace_mode

	vi_selection_mode

	vi_waiting_for_text_object_mode

	vi_digraph_mode

	emacs_mode

	emacs_insert_mode

	emacs_selection_mode

	is_searching

	control_is_searchable

	vi_search_direction_reversed

Combining filters

Filters can be chained with the & (AND) and | (OR) operators and
negated with the ~ (negation) operator.

Some examples:

from quo.keys import bind

@bind.add('ctrl-t', filter=~is_searching)
def _(event):
 " Do something, but not while searching. "
 pass

@bind.add('ctrl-t', filter=has_search | has_selection)
def _(event):
 " Do something, but only when searching or when there is a selection. "
 pass

to_filter

Finally, in many situations you want your code to expose an API that is able to
deal with both booleans as well as filters. For instance, when for most users a
boolean works fine because they don’t need to change the value over time, while
some advanced users want to be able this value to a certain setting or event
that does changes over time.

In order to handle both use cases, there is a utility called
to_filter().

This is a function that takes either a boolean or an actual Filter
instance, and always returns a Filter.

from quo.filters import Condition, to_filter, has_search, has_selection

 # In each of the following three examples, 'f' will be a `Filter`
 # instance.
 f = to_filter(True)
 f = to_filter(False)
 f = to_filter(Condition(lambda: True))
 f = to_filter(has_search | has_selection)

Text User Interface (Full screen applications)

quo can be used to create complex full screen terminal
applications. Typically, an application consists of a layout (to describe the
graphical part) and a set of key bindings.

The sections below describe the components required for full screen
applications (or custom, non full screen applications), and how to assemble
them together.

Note

Also remember that the examples directory of the quo
repository contains plenty of examples. Each example is supposed to explain
one idea. So, this as well should help you get started.

Don’t hesitate to open a GitHub issue if you feel that a certain example is
missing.

A simple application

Almost every quo application is an instance of an container(). The simplest full screen example would look like this:

from quo import container
from quo.label import Label

content = Label("Hello, world")

container(content)

This will only consume the least amount of space required.

Note

If we set the full_screen option, the application will run in an alternate screen buffer, in full screen mode.

Starting with v2022.4.5, ctrl-c will be the default key binder for to exit the app, you will still be able to define your own set of key bindings.

from quo import container
from quo.textfield import TextField

content = TextField("Hello, world")
container(content, bind=True, full_screen=True)

An application consists of several components. The most important are:

	I/O objects: the input and output device.

	The layout: this defines the graphical structure of the application. For
instance, a text box on the left side, and a button on the right side.

	A style: this defines what colors and underline/bold/italic styles are used
everywhere.

	A set of key bindings.

We will discuss all of these in more detail below.

The layout

Under the hood, class Layout is the layout for function container().

	Here’s a simple example of a a text area displaying Hello World!

from quo import container
from quo.box imort Box
from quo.textfield TextField

Layout for displaying hello world.
(The box takes care of the margin/padding.)

textfield = TextField("Hello, world!!")

content = Box(textfield)

container(content, bind=True, full_screen=True)

In the example above, the Layout consists of Box, Frame and TextField for displaying hello world.

The class Box takes care of the margin/padding, class Frame creates the border, and class TextField takes care of the text to be printed.
The quo.container() prints the layout to the output.

container

Print the layout to the output

	Parameters
	
	container - AnyContainer

	bind (bool) - When True, initiate a Bind instance for the key bindings.

	full_screen (bool) - When True, run the application on the alternate screen buffer.

	focused_element - element to be focused initially. (Can be anything the `focus` function accepts.)

	mouse_support - Filter or boolean. When True, enable mouse support.

	style - A style string.

Here’s a simple example of a few buttons and click handlers.

[image: _images/click-handlers.png]

A layered layout architecture

There are several ways to create a layout, depending on how
customizable you want things to be. In fact, there are several layers of abstraction.

	The most low-level way of creating a layout is by combining
Container and
UIControl objects.

Examples of Container objects are
VSplit (vertical split),
HSplit (horizontal split) and
FloatContainer. These containers arrange the
layout and can split it in multiple regions. Each container can recursively
contain multiple other containers. They can be combined in any way to define
the “shape” of the layout.

The Window object is a special kind of
container that can contain a UIControl
object. The UIControl object is responsible
for the generation of the actual content. The
Window object acts as an adaptor between the
UIControl and other containers, but it’s also
responsible for the scrolling and line wrapping of the content.

Examples of UIControl objects are
BufferControl for showing the content of an
editable/scrollable buffer, and
FormattedTextControl for displaying
(formatted) text.

Normally, it is never needed to create new
UIControl or
Container classes, but instead you would
create the layout by composing instances of the existing built-ins.

	A higher level abstraction of building a layout is by using “widgets”. A
widget is a reusable layout component that can contain multiple containers and controls.

	Quo contains several widgets like:
	Button,
Frame,
Label,
TextField,
VerticalLine and so on.

	The highest level abstractions can be found in the dialog module.
There we don’t have to think about the layout, controls and containers at
all. This is the simplest way to use quo, but is only meant for specific use cases, like a prompt or a simple dialog window.

Containers and controls

The biggest difference between containers and controls is that containers
arrange the layout by splitting the screen in many regions, while controls are
responsible for generating the actual content.

Note

Under the hood, the difference is:

	containers use absolute coordinates, and paint on a
Screen instance.

	user controls create a UIContent
instance. This is a collection of lines that represent the actual
content. A UIControl is not aware
of the screen.

	Abstract base class

	Examples

	Container

	HSplit
VSplit
FloatContainer
Window
ScrollablePane

	UIControl

	BufferControl
FormattedTextControl

The Window class itself is
particular: it is a Container that
can contain a UIControl. Thus, it’s the adaptor
between the two. The Window class also takes
care of scrolling the content and wrapping the lines if needed.

Finally, there is the Layout class which wraps
the whole layout. This is responsible for keeping track of which window has the
focus.

Here is an example of a layout that displays the content of the default buffer
on the left, and displays "Hello world" on the right. In between it shows a
vertical line:

from quo import container
from quo.buffer import Buffer
from quo.layout import BufferControl, FormattedTextControl, VSplit, Window

buffer1 = Buffer() # Editable buffer.

content = VSplit([
 # One window that holds the BufferControl with the default buffer on the left.
 Window(BufferControl(buffer=buffer1)),

 # A vertical line in the middle. We explicitly specify the width, to
 # make sure that the layout engine will not try to divide the whole
 # width by three for all these windows. The window will simply fill its
 # content by repeating this character.
 Window(width=1, char='|'),

 # Display the text 'Hello world' on the right.
 Window(FormattedTextControl('Hello world')),
])

container(content, full_screen=True)

More complex layouts can be achieved by nesting multiple
VSplit,
HSplit and
FloatContainer objects.

If you want to make some part of the layout only visible when a certain
condition is satisfied, use a
ConditionalContainer.

Finally, there is ScrollablePane, a container
class that can be used to create long forms or nested layouts that are
scrollable as a whole.

Key bindings

In order to react to user actions, we need to create a
Bind object using quo.keys.bind()

There are two kinds of key bindings:

	Global key bindings, which are always active.

	Key bindings that belong to a certain
UIControl and are only active when
this control is focused. Both
BufferControl
FormattedTextControl takes a bind
argument.

Global key bindings

Key bindings can be passed to the application as follows:

from quo import container
from quo.keys import bind

container(bind=True)

Registering Key bindings

To register a new keyboard shortcut, we can use the
add() method as a decorator of the key handler:

from quo import container
from quo.keys import bind
from quo.widget import TextField

content = TextField("Hello, world")

A custom Key binder to exit the application
@bind.add("ctrl-q")
def exit_(event):
 """
 Pressing "ctrl-q" will exit the user interface
 """
 event.app.exit()

container(content, bind=True, full_screen=True)

The callback function is named exit_ for clarity, but it could have been named _ (underscore) as well, or anything you see fit

Read more about key bindings [https://quo.readthedocs.io/en/latest/kb.html]

HSplit

Several layouts, one stacked above/under the other. like so:

+--------------------+
| |
+--------------------+
| |
+--------------------+

By default, this doesn’t display a horizontal line between the children, but if this is something you need, then create a HSplit as follows:

HSplit(subset=[...], padding_char='-', padding=1, padding_style='fg:red')

Parameters

	subset - List of child Container objects.

	window_too_small - A Container object that is displayed if there is not enough space for all the subsets. By default, this is a “Window too small” message.

	align - A VerticalAlign value. i.e top, center, bottom or justify

	width - When given, use this width instead of looking at the subsets.

	height - When given, use this height instead of looking at the subsets.

	z_index- (int or None) When specified, this can be used to bring element in front of floating elements. None means: inherit from parent.

	style - A style string.

	modal (bool) - Setting modal=True makes what is called a modal container. Normally, a subset container would inherit its parent key bindings. This does not apply to modal containers.

	bind - None or a Bind object.

	padding - (Dimension or int), size to be used for the padding. - padding_char - Character to be used for filling in the padding.

	padding_style - Style to applied to the padding.

from quo import container
from quo.layout import HSplit, Window
from quo.widget import Label

1. The layout
content = HSplit([
 Label("\n\n(Top pane)"),
 Window(height=1, char="-"), # Horizontal line in the middle.
 Label("\n\n(Bottom pane)")
])

 # 2. The `Application`
 # Press `ctrl-c` to exit
container(content, bind=True)

VSplit

Several layouts, one stacked left/right of the other like so:

+---------+----------+
| | |
| | |
+---------+----------+

By default, this doesn’t display a vertical line between the children, but if this is something you need, then create a VSplit as follows:

VSplipt([...], padding_char='|', padding=1, padding_style='fg:blue')

	Parameters
	
	subset - List of subsets Container objects.

	window_too_small - A Container object that is displayed if there is not enough space for all the children. By default, this is a “Window too small” message.

	align- A HorizontalAlign value. i.e left, centre, right or justify

	width - When given, use this width instead of looking at the subsets.

	height - When given, use this height instead of looking at the subsets.

	z_index - (int or None) When specified, this can be used to bring element in front of floating elements. None means: inherit from parent.

	style - A style string.

	modal (bool) - Setting modal=True makes what is called a modal container. Normally, a subset container would inherit its parent key bindings. This does not apply to modal containers.

	bind - None or a Bind object.

	padding - (Dimension or int), size to be used for the padding.

	padding_char - Character to be used for filling in the padding.

	padding_style - Style to applied to the padding.

Press `ctrl-c` to exit
from quo import container
from quo.layout import VSplit, Window
from quo.widget import Label

1. The layout
content = VSplit([
 Label("(Left pane)"),
 Window(width=1, char="|"), # Vertical line in the middle.
 Label("(Right pane)")
])

container(content, bind=True, full_screen=True)

VSplit and HSplit take a modal argument.

Setting modal=True makes what is called a modal container. Normally, a child container would inherit its parent key bindings. This does not apply to modal containers.

Consider a modal container (e.g. VSplit)
is child of another container, its parent. Any key bindings from the parent are not taken into account if the modal container (subset) has the focus.

This is useful in a complex layout, where many controls have their own key bindings, but you only want to enable the key bindings for a certain region of the layout.

The global key bindings are always active.

Window

Window is a Container that wraps a UIControl, like a BufferControl or FormattedTextControl.

	Parameters
	
	content - UIControl instance.

	width - Dimension instance or callable.

	height - Dimension instance or callable.

	z_index - When specified, this can be used to bring element in front of floating elements.

	dont_extend_width (bool) - When True, don’t take up more width then the preferred width reported by the control.

	dont_extend_height (bool) - When True, don’t take up more width then the preferred height reported by the control.

	ignore_content_width (bool) - A bool or Filter instance. Ignore the UIContent width when calculating the dimensions.

	ignore_content_height (bool) - A bool or Filter instance. Ignore the UIContent height when calculating the dimensions.

	left_margins - A list of Margin instance to be displayed on the left. For instance: NumberedMargin can be one of them in order to show line numbers.

	right_margins - Like left_margins, but on the other side.

	scroll_offsets - ScrollOffsets instance, representing the preferred amount of lines/columns to be always visible before/after the cursor. When both top and bottom are a very high number, the cursor will be centered vertically most of the time.

	allow_scroll_beyond_bottom (bool) - A bool or Filter instance. When True, allow scrolling so far, that the top part of the content is not visible anymore, while there is still empty space available at the bottom of the window. In the Vi editor for instance, this is possible. You will see tildes while the top part of the body is hidden.

	wrap_lines (bool)* - A bool or Filter instance. When True, don’t scroll horizontally, but wrap lines instead.

	get_vertical_scroll - Callable that takes this window instance as input and returns a preferred vertical scroll. (When this is `None`, the scroll is only determined by the last and current cursor position.)

	get_horizontal_scroll - Callable that takes this window instance as input and returns a preferred vertical scroll.

	always_hide_cursor (bool) - A bool or Filter instance. When True, never display the cursor, even when the user control specifies a cursor position.

	cursorline (bool) - A bool or Filter instance. When True, display a cursorline.

	cursorcolumn (bool) - A bool or Filter instance When True, display a cursorcolumn.

	colorcolumns - A list of ColorColumn instances that describe the columns to be highlighted, or a callable that returns such a list.

	align - WindowAlign value or callable that returns an WindowAlign value. alignment of content. i.e left, centre or right

	style - A style string. Style to be applied to all the cells in this window. (This can be a callable that returns a string.)

	char (str) - Character to be used for filling the background. This can also be a callable that returns a character.

	get_line_prefix - None or a callable that returns formatted text to atted text to be inserted before a line. It takes a line number (int) and a wrap_count and returns formatted text. This can be used for implementation of line continuations, things like Vim “breakindent”.

FloatContainer

Container which can contain another container for the background, as well as a list of floating containers on top of it.

Parameters

	content - AnyContainer object

	z_index - (int or None) When specified, this can be used to bring element in front of floating elements. None means: inherit from parent. This is the z_index for the whole Float container as a whole.

	floats - List of Float object.

	modal (bool) - Setting modal=True makes what is called a modal container. Normally, a subset container would inherit its parent key bindings. This does not apply to modal containers.

	bind - None or a Bind object.

	style - A style string.

Example Usage:

FloatContainer(
 Window(...),
 floats=[
 Float(
 xcursor=True,
 ycursor=True,
 content=CompletionsMenu(...)
)
]

ConditionalContainer

If you want to make some part of the layout only visible when a certain condition is satisfied, use a ConditionalContainer.
The received filter determines whether the given container should be displayed or not.

Parameters

	content - Container instance.

	filter - Filter instance.

More about buffers and BufferControl

Input processors

A Processor is used to postprocess
the content of a BufferControl before it’s
displayed. It can for instance highlight matching brackets or change the
visualisation of tabs and so on.

A Processor operates on individual
lines. Basically, it takes a (formatted) line and produces a new (formatted)
line.

Some build-in processors:

	Processor

	Usage:

	HighlightSearchProcessor

	Highlight the current search results.

	HighlightSelectionProcessor

	Highlight the selection.

	PasswordProcessor

	Display input as asterisks. (* characters).

	BracketsMismatchProcessor

	Highlight open/close mismatches for brackets.

	BeforeInput

	Insert some text before.

	AfterInput

	Insert some text after.

	AppendAutoSuggestion

	Append auto suggestion text.

	ShowLeadingWhiteSpaceProcessor

	Visualise leading whitespace.

	ShowTrailingWhiteSpaceProcessor

	Visualise trailing whitespace.

	TabsProcessor

	Visualise tabs as n spaces, or some symbols.

A BufferControl takes only one processor as
input, but it is possible to “merge” multiple processors into one with the merge_processors() function

» Check out more examples here [https://github.com/scalabli/quo/tree/master/examples/fullscreen/]

Documenting Scripts

Quo makes it very easy to document your command line tools. First of all, it automatically generates help pages for you. While these are currently not customizable in terms of their layout, all of the text can be changed.

Help Texts

Commands and apps accept help arguments. In the case of commands, the docstring of the function is automatically used if provided.

Simple example:

from quo import print
from quo.console import command
from quo.console import app

@command()
@app('--count', default=1, help='number of greetings')
@app('--name', prompt="What is your name?", help="The person to greet")
def hello(count, name):
 """This script prints hello NAME COUNT times."""
 for x in range(count):
 print(f"Hello {name}!")

And what it looks like:

$ hello.py –help

[image: _images/help-text.png]

Documenting Arguments

quo.console.arg() does not take a help parameter. This is to follow the general convention of Unix tools of using arguments for only the most necessary things, and to document them in the command help text by referring to them by name.

You might prefer to reference the argument in the description like so:

from quo import print
from quo.console import arg, command

@command()
@arg('filename')
def touch(filename):
 """Print FILENAME."""
 print(filename)

And what it looks like:

$ touch –help

Usage: touch [ᕼᕮしᑭ ᖘᗩᎶᕮ] FILENAME

 Print FILENAME.

Apps:
 --help Check the documentation for more
 mitigation steps.

Or you might prefer to explicitly provide a description of the argument:

from quo import echo
from quo.console import arg, command

@command()
@arg('filename')
def touch(filename:str):
 """Print FILENAME.

 FILENAME is the name of the file to check.
 """
 echo(filename)

And what it looks like:

$ touch –help

Usage: touch [HELP PAGE] FILENAME

 Print FILENAME.

 FILENAME is the name of the file to check.

Apps:
 --help Check the documentation for more
 mitigation steps.

For more examples, see the examples in Arguments.

Preventing Rewrapping

The default behavior of Quo is to rewrap text based on the width of the terminal. In some circumstances, this can become a problem. The main issue is when showing code examples, where newlines are significant.

Rewrapping can be disabled on a per-paragraph basis by adding a line with solely the b escape marker in it. This line will be removed from the help text and rewrapping will be disabled.

Example:

from quo.console import command

@command()
def cli():
 """First paragraph.

 This is a very long second paragraph and as you
 can see wrapped very early in the source text
 but will be rewrapped to the terminal width in
 the final output.

 \b
 This is
 a paragraph
 without rewrapping.

 And this is a paragraph
 that will be rewrapped again.
 """

And what it looks like:

$ cli –help

Usage: cli [HELP PAGE]

 First paragraph.

 This is a very long second paragraph and as you can see wrapped very early in
 the source text but will be rewrapped to the terminal width in the final
 output.

 This is
 a paragraph
 without rewrapping.

 And this is a paragraph that will be rewrapped again.

Apps:
 --help Check the documentation for more
 mitigation steps.

Truncating Help Texts

Quo gets command help text from function docstrings. However if you already use docstrings to document function arguments you may not want to see :param: and :return: lines in your help text.

You can use the f escape marker to have Quo truncate the help text after the marker.

Example:

And what it looks like:

$ cli –help

Usage: cli [HELP PAGE]

 First paragraph.

 This is a very long second paragraph and not correctly wrapped but it will be
 rewrapped.

Apps:
 --help Check the documentation for more
 mitigation steps..

Meta Variables

Apps and parameters accept a metavar argument that can change the meta variable in the help page. The default version is the parameter name in uppercase with underscores, but can be annotated differently if desired. This can be customized at all levels:

from quo import echo
from quo.console import app, command

@command(apps_metavar='<options>')
@app('--count', default=1, help='number of greetings', metavar='<int>')
@arg('name', metavar='<name>')
def hello(count, name):
 """This script prints hello <name> <int> times."""
 for x in range(count):
 echo(f"Hello {name}!")

Example:

$ hello –help

Usage: hello <options> <name>

 This script prints hello <name> <int> times.

Apps:
 --count <int> number of greetings
 --help Check the documentation for more
 mitigation steps.

Command Short Help

For commands, a short help snippet is generated. By default, it’s the first sentence of the help message of the command, unless it’s too long. This can also be overridden:

from quo.console import command, tether

@tether()
def cli():
 """A simple command line tool."""

@cli.command('init', short_help='init the repo')
def init():
 """Initializes the repository."""

@cli.command('delete', short_help='delete the repo')
def delete():
 """Deletes the repository."""

And what it looks like:

$ repo.py

Usage: repo.py [HELP PAGE] COMMAND [ARGS]...

 A simple command line tool.

Apps:
 --help Show this message and exit.

Commands:
 delete delete the repo
 init init the repo

Help Parameter Customization

This example changes the default parameters to -h and –help instead of just –help:

And what it looks like:

$ cli -h

Usage: cli [HELP PAGE]

Apps:
 -h, --help Check the documentation for more
 mitigation steps.

Input hooks

Input hooks are a tool for inserting an external event loop into Quo’s event loop, so that the other loop can run as long as quo(actually asyncio) is idle. This is used in applications like
IPython [https://ipython.org/], so that GUI toolkits can display their
windows while we wait at the prompt for user input.

As a consequence, we will “trampoline” back and forth between two event loops.

Note

This will use a SelectorEventLoop, not the :class:
ProactorEventLoop (on Windows) due to the way the
implementation works (contributions are welcome to make that work).

from quo.eventloop.inputhook import set_eventloop_with_inputhook

def inputhook(inputhook_context):
 # At this point, we run the other loop. This loop is supposed to run
 # until either `inputhook_context.fileno` becomes ready for reading or
 # `inputhook_context.input_is_ready()` returns True.

 # A good way is to register this file descriptor in this other event
 # loop with a callback that stops this loop when this FD becomes ready.
 # There is no need to actually read anything from the FD.

 while True:
 ...

set_eventloop_with_inputhook(inputhook)

Any asyncio code at this point will now use this new loop, with input
hook installed.

 Yes, it’s now more of a flag (similar to action=”store_true”) in the previous version of our script. That should explain the complaint.

It also behaves similar to “store_true” action.

Now here’s a demonstration of what the “count” action gives. You’ve probably seen this sort of usage before.

And if you don’t specify the -v flag, that flag is considered to have None value.

As should be expected, specifying the long form of the flag, we should get the same output.

Sadly, our help output isn’t very informative on the new ability our script has acquired, but that can always be fixed by improving the documentation for our script (e.g. via the help keyword argument).

That last output exposes a bug in our program.

Let’s fix:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(“square”, type=int,

help=”display a square of a given number”)

	parser.add_argument(“-v”, “–verbosity”, action=”count”,
	help=”increase output verbosity”)

args = parser.parse_args()
answer = args.square**2

bugfix: replace == with >=
if args.verbosity >= 2:

print(f”the square of {args.square} equals {answer}”)

	elif args.verbosity >= 1:
	print(f”{args.square}^2 == {answer}”)

	else:
	print(answer)

And this is what it gives:

$ python3 prog.py 4 -vvv
the square of 4 equals 16
$ python3 prog.py 4 -vvvv
the square of 4 equals 16
$ python3 prog.py 4
Traceback (most recent call last):

	File “prog.py”, line 11, in <module>
	if args.verbosity >= 2:

TypeError: ‘>=’ not supported between instances of ‘NoneType’ and ‘int’
First output went well, and fixes the bug we had before. That is, we want any value >= 2 to be as verbose as possible.

Third output not so good.

Let’s fix that bug:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(“square”, type=int,

help=”display a square of a given number”)

	parser.add_argument(“-v”, “–verbosity”, action=”count”, default=0,
	help=”increase output verbosity”)

args = parser.parse_args()
answer = args.square**2
if args.verbosity >= 2:

print(f”the square of {args.square} equals {answer}”)

	elif args.verbosity >= 1:
	print(f”{args.square}^2 == {answer}”)

	else:
	print(answer)

We’ve just introduced yet another keyword, default. We’ve set it to 0 in order to make it comparable to the other int values. Remember that by default, if an optional argument isn’t specified, it gets the None value, and that cannot be compared to an int value (hence the TypeError exception).

And:

$ python3 prog.py 4
16
You can go quite far just with what we’ve learned so far, and we have only scratched the surface. The argparse module is very powerful, and we’ll explore a bit more of it before we end this tutorial.

Getting a little more advanced
What if we wanted to expand our tiny program to perform other powers, not just squares:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(“x”, type=int, help=”the base”)
parser.add_argument(“y”, type=int, help=”the exponent”)
parser.add_argument(“-v”, “–verbosity”, action=”count”, default=0)
args = parser.parse_args()
answer = args.x**args.y
if args.verbosity >= 2:

print(f”{args.x} to the power {args.y} equals {answer}”)

	elif args.verbosity >= 1:
	print(f”{args.x}^{args.y} == {answer}”)

	else:
	print(answer)

Output:

$ python3 prog.py
usage: prog.py [-h] [-v] x y
prog.py: error: the following arguments are required: x, y
$ python3 prog.py -h
usage: prog.py [-h] [-v] x y

	positional arguments:
	x the base
y the exponent

	options:
	
	-h, --help

	show this help message and exit

-v, –verbosity

$ python3 prog.py 4 2 -v
4^2 == 16
Notice that so far we’ve been using verbosity level to change the text that gets displayed. The following example instead uses verbosity level to display more text instead:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(“x”, type=int, help=”the base”)
parser.add_argument(“y”, type=int, help=”the exponent”)
parser.add_argument(“-v”, “–verbosity”, action=”count”, default=0)
args = parser.parse_args()
answer = args.x**args.y
if args.verbosity >= 2:

print(f”Running ‘{__file__}’”)

	if args.verbosity >= 1:
	print(f”{args.x}^{args.y} == “, end=””)

print(answer)
Output:

$ python3 prog.py 4 2
16
$ python3 prog.py 4 2 -v
4^2 == 16
$ python3 prog.py 4 2 -vv
Running ‘prog.py’
4^2 == 16

The rendering flow

Understanding the rendering flow is important for understanding how
Container and
UIControl objects interact. We will demonstrate
it by explaining the flow around a
BufferControl.

Note

A BufferControl is a
UIControl for displaying the content of a
Buffer. A buffer is the object that holds
any editable region of text. Like all controls, it has to be wrapped into a
Window.

Let’s take the following code:

from quo.enums import DEFAULT_BUFFER
from quo.layout.containers import Window
from quo.layout.controls import BufferControl
from quo.buffer import Buffer

b = Buffer(name=DEFAULT_BUFFER)
Window(content=BufferControl(buffer=b))

What happens when a Renderer objects wants a
Container to be rendered on a certain
Screen?

The visualisation happens in several steps:

	The Renderer calls the
write_to_screen() method
of a Container.
This is a request to paint the layout in a rectangle of a certain size.

The Window object then requests
the UIControl to create a
UIContent instance (by calling
create_content()).
The user control receives the dimensions of the window, but can still
decide to create more or less content.

Inside the create_content()
method of UIControl, there are several
steps:

	First, the buffer’s text is passed to the
lex_document() method of a
Lexer. This returns a function which
for a given line number, returns a “formatted text list” for that line
(that’s a list of (style_string, text) tuples).

	This list is passed through a list of
Processor objects.
Each processor can do a transformation for each line.
(For instance, they can insert or replace some text, highlight the
selection or search string, etc…)

	The UIControl returns a
UIContent instance which
generates such a token lists for each lines.

The Window receives the
UIContent and then:

	It calculates the horizontal and vertical scrolling, if applicable
(if the content would take more space than what is available).

	The content is copied to the correct absolute position
Screen, as requested by the
Renderer. While doing this, the
Window can possible wrap the
lines, if line wrapping was configured.

Note that this process is lazy: if a certain line is not displayed in the
Window, then it is not requested
from the UIContent. And from there, the line is
not passed through the processors or even asked from the
Lexer.

The rendering pipeline

This document is an attempt to describe how quo applications are
rendered. It’s a complex but logical process that happens more or less after
every key stroke. We’ll go through all the steps from the point where the user
hits a key, until the character appears on the screen.

Waiting for user input

Most of the time when a quo application is running, it is idle. It’s
sitting in the event loop, waiting for some I/O to happen. The most important
kind of I/O we’re waiting for is user input. So, within the event loop, we have
one file descriptor that represents the input device from where we receive key
presses. The details are a little different between operating systems, but it
comes down to a selector (like select or epoll) which waits for one or more
file descriptor. The event loop is then responsible for calling the appropriate
feedback when one of the file descriptors becomes ready.

It is like that when the user presses a key: the input device becomes ready for
reading, and the appropriate callback is called. This is the read_from_input
function somewhere in application.py. It will read the input from the
Input object, by calling
read_keys().

Reading the user input

The actual reading is also operating system dependent. For instance, on a Linux
machine with a vt100 terminal, we read the input from the pseudo terminal
device, by calling os.read. This however returns a sequence of bytes. There
are two difficulties:

	The input could be UTF-8 encoded, and there is always the possibility that we
receive only a portion of a multi-byte character.

	vt100 key presses consist of multiple characters. For instance the “left
arrow” would generate something like \x1b[D. It could be that when we
read this input stream, that at some point we only get the first part of such
a key press, and we have to wait for the rest to arrive.

Both problems are implemented using state machines.

	The UTF-8 problem is solved using codecs.getincrementaldecoder, which is an
object in which we can feed the incoming bytes, and it will only return the
complete UTF-8 characters that we have so far. The rest is buffered for the
next read operation.

	Vt100 parsing is solved by the
Vt100Parser state machine. The
state machine itself is implemented using a generator. We feed the incoming
characters to the generator, and it will call the appropriate callback for
key presses once they arrive. One thing here to keep in mind is that the
characters for some key presses are a prefix of other key presses, like for
instance, escape (\x1b) is a prefix of the left arrow key (\x1b[D).
So for those, we don’t know what key is pressed until more data arrives or
when the input is flushed because of a timeout.

For Windows systems, it’s a little different. Here we use Win32 syscalls for
reading the console input.

Processing the key presses

The Key objects that we receive are then passed to the
KeyProcessor for matching
against the currently registered and active key bindings.

This is another state machine, because key bindings are linked to a sequence of
key presses. We cannot call the handler until all of these key presses arrive
and until we’re sure that this combination is not a prefix of another
combination. For instance, sometimes people bind jj (a double j key
press) to esc in Vi mode. This is convenient, but we want to make sure that
pressing j once only, followed by a different key will still insert the
j character as usual.

Now, there are hundreds of key bindings in quo (in ptpython, right
now we have 585 bindings). This is mainly caused by the way that Vi key
bindings are generated. In order to make this efficient, we keep a cache of
handlers which match certain sequences of keys.

Of course, key bindings also have filters attached for enabling/disabling them.
So, if at some point, we get a list of handlers from that cache, we still have
to discard the inactive bindings. Luckily, many bindings share exactly the same
filter, and we have to check every filter only once.

Read more about key bindings …

The key handlers

Once a key sequence is matched, the handler is called. This can do things like
text manipulation, changing the focus or anything else.

After the handler is called, the user interface is invalidated and rendered
again.

Rendering the user interface

The rendering is pretty complex for several reasons:

	We have to compute the dimensions of all user interface elements. Sometimes
they are given, but sometimes this requires calculating the size of
UIControl objects.

	It needs to be very efficient, because it’s something that happens on every
single key stroke.

	We should output as little as possible on stdout in order to reduce latency
on slow network connections and older terminals.

Calculating the total UI height

Unless the application is a full screen application, we have to know how much
vertical space is going to be consumed. The total available width is given, but
the vertical space is more dynamic. We do this by asking the root
Container object to calculate its preferred
height. If this is a VSplit or
HSplit then this involves recursively querying
the child objects for their preferred widths and heights and either summing it
up, or taking maximum values depending on the actual layout.
In the end, we get the preferred height, for which we make sure it’s at least
the distance from the cursor position to the bottom of the screen.

Painting to the screen

Then we create a Screen object. This is
like a canvas on which user controls can paint their content. The
write_to_screen() method of the root
Container is called with the screen dimensions. This will call recursively
write_to_screen() methods of nested
child containers, each time passing smaller dimensions while we traverse what
is a tree of Container objects.

The most inner containers are Window objects,
they will do the actual painting of the
UIControl to the screen. This involves line
wrapping the UIControl’s text and maybe scrolling the content horizontally or
vertically.

Rendering to stdout

Finally, when we have painted the screen, this needs to be rendered to stdout.
This is done by taking the difference of the previously rendered screen and the
new one. The algorithm that we have is heavily optimized to compute this
difference as quickly as possible, and call the appropriate output functions of
the Output back-end. At the end, it will
position the cursor in the right place.

Styling 🎨

This page will attempt to explain in more detail how to use styling in quo.

Style strings

Many user interface controls, like Window
accept a style argument which can be used to pass the formatting as a
string. For instance, we can select a foreground color:

	"fg:red"

	"fg:blue"

	"fg:#ffaa33" (hexadecimal notation)

	"fg:darkred" (named color)

Or a background color:

	"bg:green"

	"bg:#ffaa33" (hexadecimal notation)

Or we can add one of the following flags:

	"bold"

	"italic"

	"underline" or "ul"

	"blink"

	"reverse" (reverse foreground and background on the terminal.)

	"hidden"

Or their negative variants:

	"nobold"

	"noitalic"

	"nounderline"

	"noblink"

	"noreverse"

	"nohidden"

All of these formatting options can be combined like so:

	"fg:yellow bg:black bold underline"

The style string can be given to any user control directly, or to a
Container object from where it will propagate
to all its children. A style defined by a parent user control can be overridden
by any of its children. The parent can for instance say style="bold
underline" where a child overrides this style partly by specifying
style="nobold bg:ansired".

The following ANSI colors are available (both for foreground and background) when using Style

Low intensity, dark. (One or two components 0x80, the other 0x00.)
ansiblack, ansired, ansigreen, ansiyellow, ansiblue
ansimagenta, 'ansicyan, ansigray

High intensity, bright.
ansibrightblack, ansibrightred, ansibrightgreen, ansibrightyellow
ansibrightblue, ansibrightmagenta, ansibrightcyan, ansiwhite

In order to know which styles are actually used in an application using Console class, it is
possible to call get_used_style_strings(), when the
application is done.

Class names

Like we do for web design, it is not a good habit to specify all styling
inline. Instead, we can attach class names to UI controls and have a style
sheet that refers to these class names. The
Style can be passed as an argument to the Console.

from quo.layout import VSplit
from quo.layout import HSplit
from quo.layout import Window
from quo.layout import BufferControl
from quo.style import Style

layout = VSplit([
 Window(BufferControl(...), style='class:left'),
 HSplit([
 Window(BufferControl(...), style='class:top'),
 Window(BufferControl(...), style='class:bottom'),
], style='class:right')
])

style = Style([
 ('left', 'bg:red'),
 ('top', 'fg:green'),
 ('bottom', 'underline bold'),
])

It is possible to add multiple class names to an element. That way we’ll
combine the styling for these class names. Multiple classes can be passed by
using a comma separated list, or by using the class: prefix twice.

quo.layout.Window(quo.layout.BufferControl(...), style='class:left,bottom'),
quo.layout.Window(quo.layout.BufferControl(...), style='class:left class:bottom'),

It is possible to combine class names and inline styling. The order in which
the class names and inline styling is specified determines the order of
priority. In the following example for instance, we’ll take first the style of
the “header” class, and then override that with a red background color.

Window(BufferControl(...), style='class:header bg:red'),

Dot notation in class names

The dot operator has a special meaning in a class name. If we write:
style="class:a.b.c", then this will actually expand to the following:
style="class:a class:a.b class:a.b.c".

This is mainly added for Pygments [http://pygments.org/] lexers, which
specify “Tokens” like this, but it’s useful in other situations as well.

Multiple classes in a style sheet

A style sheet can be more complex as well. We can for instance specify two
class names. The following will underline the left part within the header, or
whatever has both the class “left” and the class “header” (the order doesn’t
matter).

style = Style([
 ('header left', 'underline'),
])

If you have a dotted class, then it’s required to specify the whole path in the
style sheet (just typing c or b.c doesn’t work if the class is
a.b.c):

style = Style([
 ('a.b.c', 'underline'),
])

It is possible to combine this:

style = Style([
 ('header body left.text', 'underline'),
])

Evaluation order of rules in a style sheet

The style is determined as follows:

	First, we concatenate all the style strings from the root control through all
the parents to the child in one big string. (Things at the right take
precedence anyway.)

E.g: class:body bg:#aaaaaa #000000 class:header.focused class:left.text.highlighted underline

	Then we go through this style from left to right, starting from the default
style. Inline styling is applied directly.

If we come across a class name, then we generate all combinations of the
class names that we collected so far (this one and all class names to the
left), and for each combination which includes the new class name, we look
for matching rules in our style sheet. All these rules are then applied
(later rules have higher priority).

If we find a dotted class name, this will be expanded in the individual names
(like class:left class:left.text class:left.text.highlighted), and all
these are applied like any class names.

	Then this final style is applied to this user interface element.

Using a dictionary as a style sheet

The order of the rules in a style sheet is meaningful, so typically, we use a
list of tuples to specify the style. But is also possible to use a dictionary
as a style sheet. This makes sense for Python 3.6, where dictionaries remember
their ordering. An OrderedDict works as well.

from quo.style import Style

style = Style.add({
 'header body left.text': 'underline',
})

Loading a style from Pygments

Pygments [http://pygments.org/] has a slightly different notation for
specifying styles, because it maps styling to Pygments “Tokens”. A Pygments
style can however be loaded and used as follows:

from quo.style.pygments import style_from_pygments_cls
from pygments.styles import get_style_by_name

style = style_from_pygments_cls(get_style_by_name('monokai'))

Merging styles together

Multiple Style objects can be merged together as
follows:

from quo.style import merge_styles

style = merge_styles([
 style1,
 style2,
 style3
])

Color depths

There are four different levels of color depths available:

	1 bit

	Black and white

	ColorDepth.one_bit or ColorDepth.MONOCHROME

	4 bit

	ANSI colors

	ColorDepth.four_bit or ColorDepth.ANSI_COLORS_ONLY

	8 bit

	256 colors

	ColorDepth.eight_bit or ColorDepth.DEFAULT

	24 bit

	True colors

	ColorDepth.twenty_four_bit or ColorDepth.TRUE_COLOR

By default, 256 colors are used, because this is what most terminals support
these days. If the TERM enviroment variable is set to linux or
eterm-color, then only ANSI colors are used, because of these terminals. The 24
bit true color output needs to be enabled explicitely. When 4 bit color output
is chosen, all colors will be mapped to the closest ANSI color.

Setting the default color depth for any application can be done
by setting the QUO_COLOR_DEPTH environment variable. You could
for instance copy the following into your .bashrc or .zshrc file.

export QUO_COLOR_DEPTH=one_bit
export QUO_COLOR_DEPTH=four_bit
export QUO_COLOR_DEPTH=eight_bit
export QUO_COLOR_DEPTH=twenty_four_bit

An application can also decide to set the color depth manually by passing a
ColorDepth value to the
Console object:

from quo.console import Console
from quo.color import ColorDepth

app = Console(color_depth=ColorDepth.ANSI_COLORS_ONLY,
 # ...
)

Style transformations

Quo supports a way to apply certain transformations to the styles
near the end of the rendering pipeline. This can be used for instance to change
certain colors to improve the rendering in some terminals.

One useful example is the
AdjustBrightnessStyleTransformation class,
which takes min_brightness and max_brightness as arguments which by default
have 0.0 and 1.0 as values. In the following code snippet, we increase the
minimum brightness to improve rendering on terminals with a dark background.

from quo.console import Console
from quo.style import AdjustBrightnessStyleTransformation

app = Console(
 style_transformation=AdjustBrightnessStyleTransformation(
 min_brightness=0.5, # Increase the minimum brightness.
 max_brightness=1.0,
)
 # ...
)

Supported Colors

ANSI Colors names for echo function

	black (might be a gray)

	red

	green

	yellow (might be an orange)

	blue

	magenta

	cyan

	white (might be light gray)

	vblack vibrant black

	vblue

	vmagenta

	vwhite

	vcyan

	vred

	vgreen

	vyellow

RGB colors

Unicode Support

Unicode is an information technology standard for the consistent encoding, representation, and handling of text.

	The command line in Unix is traditionally bytes, not Unicode. While
there are encoding hints, there are some situations where this can
break. The most common one is SSH connections to machines with
different locales.

Misconfigured environments can cause a wide range of Unicode
problems due to the lack of support for roundtripping surrogate
escapes. This will not be fixed in Quo itself!

	Standard input and output is opened in text mode by default. Quo
has to reopen the stream in binary mode in certain situations.
Because there is no standard way to do this, it might not always
work. Primarily this can become a problem when testing command-line
applications.

This is not supported:

sys.stdin = io.StringIO('Input here')
sys.stdout = io.StringIO()

Instead you need to do this:

input = 'Input here'
in_stream = io.BytesIO(input.encode('utf-8'))
sys.stdin = io.TextIOWrapper(in_stream, encoding='utf-8')
out_stream = io.BytesIO()
sys.stdout = io.TextIOWrapper(out_stream, encoding='utf-8')

Remember in that case, you need to use out_stream.getvalue()
and not sys.stdout.getvalue() if you want to access the buffer
contents as the wrapper will not forward that method.

	sys.stdin, sys.stdout and sys.stderr are by default
text-based. When Quo needs a binary stream, it attempts to
discover the underlying binary stream.

	sys.argv is always text. This means that the native type for
input values to the types in Quo is Unicode, not bytes.

This causes problems if the terminal is incorrectly set and Python
does not figure out the encoding. In that case, the Unicode string
will contain error bytes encoded as surrogate escapes.

	When dealing with files, Quo will always use the Unicode file
system API by using the operating system’s reported or guessed
filesystem encoding. Surrogates are supported for filenames, so it
should be possible to open files through the File type even
if the environment is misconfigured.

Surrogate Handling

Quo does all the Unicode handling in the standard library and is
subject to its behavior. Unicode requires extra care. The reason for
this is that the encoding detection is done in the interpreter, and on
Linux and certain other operating systems, its encoding handling is
problematic.

The biggest source of frustration is that Quo scripts invoked by init
systems, deployment tools, or cron jobs will refuse to work unless a
Unicode locale is exported.

If Quo encounters such an environment it will prevent further
execution to force you to set a locale. This is done because Quo
cannot know about the state of the system once it’s invoked and restore
the values before Python’s Unicode handling kicked in.

If you see something like this error:

Traceback (most recent call last):
 ...
RuntimeError: Quo will abort further execution because Python was
 configured to use ASCII as encoding for the environment. Consult
 https://quo.readthedocs.org/unicode-support/ for mitigation
 steps.

You are dealing with an environment where Python thinks you are
restricted to ASCII data. The solution to these problems is different
depending on which locale your computer is running in.

For instance, if you have a German Linux machine, you can fix the
problem by exporting the locale to de_DE.utf-8:

export LC_ALL=de_DE.utf-8
export LANG=de_DE.utf-8

If you are on a US machine, en_US.utf-8 is the encoding of choice.
On some newer Linux systems, you could also try C.UTF-8 as the
locale:

export LC_ALL=C.UTF-8
export LANG=C.UTF-8

On some systems it was reported that UTF-8 has to be written as
UTF8 and vice versa. To see which locales are supported you can
invoke locale -a.

You need to export the values before you invoke your Python script.

Unit testing

Testing user interfaces is not always obvious. Here are a few tricks for
testing quo applications.

PosixPipeInput and DummyOutput

During the creation of a prompt_toolkit
Suite, we can specify what input and
output device to be used. By default, these are output objects that correspond
with sys.stdin and sys.stdout. In unit tests however, we want to replace
these.

	For the input, we want a “pipe input”. This is an input device, in which we
can programatically send some input. It can be created with
create_pipe_input(), and that return either a
PosixPipeInput or a
Win32PipeInput depending on the
platform.

	For the output, we want a DummyOutput. This is
an output device that doesn’t render anything. We don’t want to render
anything to sys.stdout in the unit tests.

Note

Typically, we don’t want to test the bytes that are written to
sys.stdout, because these can change any time when the rendering
algorithm changes, and are not so meaningful anyway. Instead, we want to
test the return value from the
Suite or test how data
structures (like text buffers) change over time.

So we programmatically feed some input to the input pipe, have the key
bindings process the input and then test what comes out of it.

In the following example we use a
Prompt, but the same works for any
Suite.

import quo

from quo.input import create_pipe_input
from quo.output import DummyOutput

def test_prompt_session():
 inp = create_pipe_input()

 try:
 inp.send_text("hello\n")
 session = quo.Prompt(
 input=inp,
 output=DummyOutput(),
)

 result = session.prompt()
 finally:
 inp.close()

 assert result == "hello"

In the above example, don’t forget to send the \n character to accept the
prompt, otherwise the Suite will
wait forever for some more input to receive.

Using an AppSession

Sometimes it’s not convenient to pass input or output objects to the
Suite, and in some situations it’s
not even possible at all.
This happens when these parameters are not passed down the call stack, through
all function calls.

An easy way to specify which input/output to use for all applications, is by
creating an AppSession with this
input/output and running all code in that
AppSession. This way, we don’t
need to inject it into every Suite
or inscribe() call.

Here is an example where we use
create_app_session():

import quo
from quo.suite import create_app_session
from quo..output import DummyOutput

def test_something():
 with create_app_session(output=DummyOutput()):
 ...
 quo.inscribe('Hello world')
 ...

Pytest fixtures

In order to get rid of the boilerplate of creating the input, the
DummyOutput, and the
AppSession, we create a
single fixture that does it for every test. Something like this:

import pytest
from quo.suite import create_app_session
from quo.input import create_pipe_input
from quo.output import DummyOutput

@pytest.fixture(autouse=True, scope="function")
def mock_input():
 pipe_input = create_pipe_input()
 try:
 with create_app_session(input=pipe_input, output=DummyOutput()):
 yield pipe_input
 finally:
 pipe_input.close()

ANSI COLORS

	black (might be a gray)

	red

	green

	yellow (might be an orange)

	blue

	magenta

	cyan

	white (might be light gray)

	vblack (vibrant black)

	vred

	vgreen

	vyellow

RGB COLORS

	aquamarine

	azure

	beige

	bisque

	brown

	chocolate

	coral

	crimson

	gold

	gray

	honeydew

	indigo

	ivory

	khaki

	lavender

	lime

	maroon

	navy

	olive

	plum

	salmon

	silver

	teal

	thistle

	turquoise

	violet

Tutorials

Contents:

	Tutorial: Build an SQLite REPL

Tutorial: Build an SQLite REPL

The aim of this tutorial is to build an interactive command line interface for
an SQLite database using prompt_toolkit [https://github.com/prompt-toolkit/python-prompt-toolkit].

First, install the library using pip, if you haven’t done this already.

pip install prompt_toolkit

Read User Input

Let’s start accepting input using the
prompt() function. This will ask the user for
input, and echo back whatever the user typed. We wrap it in a main()
function as a good practice.

from prompt_toolkit import prompt

def main():
 text = prompt('> ')
 print('You entered:', text)

if __name__ == '__main__':
 main()

[image: ../images/repl/sqlite-1.png]

Loop The REPL

Now we want to call the prompt()
method in a loop. In order to keep the history, the easiest way to do it is to
use a PromptSession. This uses an
InMemoryHistory underneath that keeps track of
the history, so that if the user presses the up-arrow, they’ll see the previous
entries.

The prompt() method raises
KeyboardInterrupt when ControlC has been pressed and EOFError when
ControlD has been pressed. This is what people use for cancelling commands and
exiting in a REPL. The try/except below handles these error conditions and make
sure that we go to the next iteration of the loop or quit the loop
respectively.

from prompt_toolkit import PromptSession

def main():
 session = PromptSession()

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue
 except EOFError:
 break
 else:
 print('You entered:', text)
 print('GoodBye!')

if __name__ == '__main__':
 main()

[image: ../images/repl/sqlite-2.png]

Syntax Highlighting

This is where things get really interesting. Let’s step it up a notch by adding
syntax highlighting to the user input. We know that users will be entering SQL
statements, so we can leverage the Pygments [http://pygments.org/] library for coloring the input.
The lexer parameter allows us to set the syntax lexer. We’re going to use
the SqlLexer from the Pygments [http://pygments.org/] library for highlighting.

Notice that in order to pass a Pygments lexer to prompt_toolkit, it needs to be
wrapped into a PygmentsLexer.

from prompt_toolkit import PromptSession
from prompt_toolkit.lexers import PygmentsLexer
from pygments.lexers.sql import SqlLexer

def main():
 session = PromptSession(lexer=PygmentsLexer(SqlLexer))

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue
 except EOFError:
 break
 else:
 print('You entered:', text)
 print('GoodBye!')

if __name__ == '__main__':
 main()

[image: ../images/repl/sqlite-3.png]

Auto-completion

Now we are going to add auto completion. We’d like to display a drop down menu
of possible keywords [https://www.sqlite.org/lang_keywords.html] when the
user starts typing.

We can do this by creating an sql_completer object from the
WordCompleter class, defining a set of
keywords for the auto-completion.

Like the lexer, this sql_completer instance can be passed to either the
PromptSession class or the
prompt() method.

from prompt_toolkit import PromptSession
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([
 'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
 'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
 'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
 'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
 'current_time', 'current_timestamp', 'database', 'default',
 'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
 'drop', 'each', 'else', 'end', 'escape', 'except', 'exclusive',
 'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
 'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',
 'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
 'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
 'match', 'natural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
 'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
 'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
 'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
 'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
 'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
 'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',
 'without'], ignore_case=True)

def main():
 session = PromptSession(
 lexer=PygmentsLexer(SqlLexer), completer=sql_completer)

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue
 except EOFError:
 break
 else:
 print('You entered:', text)
 print('GoodBye!')

if __name__ == '__main__':
 main()

[image: ../images/repl/sqlite-4.png]
In about 30 lines of code we got ourselves an auto completing, syntax
highlighting REPL. Let’s make it even better.

Styling the menus

If we want, we can now change the colors of the completion menu. This is
possible by creating a Style instance and
passing it to the prompt()
function.

from prompt_toolkit import PromptSession
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.styles import Style
from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([
 'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
 'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
 'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
 'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
 'current_time', 'current_timestamp', 'database', 'default',
 'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
 'drop', 'each', 'else', 'end', 'escape', 'except', 'exclusive',
 'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
 'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',
 'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
 'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
 'match', 'natural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
 'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
 'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
 'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
 'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
 'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
 'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',
 'without'], ignore_case=True)

style = Style.from_dict({
 'completion-menu.completion': 'bg:#008888 #ffffff',
 'completion-menu.completion.current': 'bg:#00aaaa #000000',
 'scrollbar.background': 'bg:#88aaaa',
 'scrollbar.button': 'bg:#222222',
})

def main():
 session = PromptSession(
 lexer=PygmentsLexer(SqlLexer), completer=sql_completer, style=style)

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue
 except EOFError:
 break
 else:
 print('You entered:', text)
 print('GoodBye!')

if __name__ == '__main__':
 main()

[image: ../images/repl/sqlite-5.png]
All that’s left is hooking up the sqlite backend, which is left as an exercise
for the reader. Just kidding… Keep reading.

Hook up Sqlite

This step is the final step to make the SQLite REPL actually work. It’s time
to relay the input to SQLite.

Obviously I haven’t done the due diligence to deal with the errors. But it
gives a good idea of how to get started.

#!/usr/bin/env python
import sys
import sqlite3

from prompt_toolkit import PromptSession
from prompt_toolkit.completion import WordCompleter
from prompt_toolkit.lexers import PygmentsLexer
from prompt_toolkit.styles import Style
from pygments.lexers.sql import SqlLexer

sql_completer = WordCompleter([
 'abort', 'action', 'add', 'after', 'all', 'alter', 'analyze', 'and',
 'as', 'asc', 'attach', 'autoincrement', 'before', 'begin', 'between',
 'by', 'cascade', 'case', 'cast', 'check', 'collate', 'column',
 'commit', 'conflict', 'constraint', 'create', 'cross', 'current_date',
 'current_time', 'current_timestamp', 'database', 'default',
 'deferrable', 'deferred', 'delete', 'desc', 'detach', 'distinct',
 'drop', 'each', 'else', 'end', 'escape', 'except', 'exclusive',
 'exists', 'explain', 'fail', 'for', 'foreign', 'from', 'full', 'glob',
 'group', 'having', 'if', 'ignore', 'immediate', 'in', 'index',
 'indexed', 'initially', 'inner', 'insert', 'instead', 'intersect',
 'into', 'is', 'isnull', 'join', 'key', 'left', 'like', 'limit',
 'match', 'natural', 'no', 'not', 'notnull', 'null', 'of', 'offset',
 'on', 'or', 'order', 'outer', 'plan', 'pragma', 'primary', 'query',
 'raise', 'recursive', 'references', 'regexp', 'reindex', 'release',
 'rename', 'replace', 'restrict', 'right', 'rollback', 'row',
 'savepoint', 'select', 'set', 'table', 'temp', 'temporary', 'then',
 'to', 'transaction', 'trigger', 'union', 'unique', 'update', 'using',
 'vacuum', 'values', 'view', 'virtual', 'when', 'where', 'with',
 'without'], ignore_case=True)

style = Style.from_dict({
 'completion-menu.completion': 'bg:#008888 #ffffff',
 'completion-menu.completion.current': 'bg:#00aaaa #000000',
 'scrollbar.background': 'bg:#88aaaa',
 'scrollbar.button': 'bg:#222222',
})

def main(database):
 connection = sqlite3.connect(database)
 session = PromptSession(
 lexer=PygmentsLexer(SqlLexer), completer=sql_completer, style=style)

 while True:
 try:
 text = session.prompt('> ')
 except KeyboardInterrupt:
 continue # Control-C pressed. Try again.
 except EOFError:
 break # Control-D pressed.

 with connection:
 try:
 messages = connection.execute(text)
 except Exception as e:
 print(repr(e))
 else:
 for message in messages:
 print(message)

 print('GoodBye!')

if __name__ == '__main__':
 if len(sys.argv) < 2:
 db = ':memory:'
 else:
 db = sys.argv[1]

 main(db)

[image: ../images/repl/sqlite-6.png]
I hope that gives an idea of how to get started on building command line
interfaces.

The End.

 _images/white-on-green.png
B - . python L 3N
L pthen7o]
rooticheckmate JEE) python

Python 3.10.5 (main, Jun 8 2022, 09:26:22) [6CC 11.3.0] on linux
Type "help”, "copyright", "credits" or "license’ for more information.
>>> from quo import print

>>> print("<style fg='white' bg='green'>White on green</style>")

>>>

_images/width.png
B x v A~ Terminal - python /home/gerry/git/quo/docs/images/tables

master) x
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.8] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.table import Table
>>>
>>> data =

[
[1, 'John Smith', 'This is a rather long description that might look better if it is wrapped a bit']
1

> table = Table(data)

table.print(headers=("Issue Id", "Author", "Description”), column width=[None, None, 30])

Issue Id | Author Description

1 | John Smith | This is a rather long
description that might look
better if it is wrapped a bit

_images/two-tasks.png
B x Terminal - python two-tasks.py /home/gerry/git/quo/examples/progress

> progress
ITWO TASKS
) ————————————— 52/100 eta (00:02)

32/150 eta (00:09)

_images/underlined.png
B - . python L 3N
L pthen7o]
rooticheckmate JEE) python

Python 3.10.5 (main, Jun 8 2022, 09:26:22) [6CC 11.3.0] on linux

Type "help”, "copyright", "credits" or "license’ for more information.
>>> from quo import echo

>>> echo("This is underlined”, underline=True)
This is underlined

_images/wordcompleter.png
B x v A~ Terminal - python /home/gerry/git/quo/docs/images/prompt.

> prompt
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.prompt import Prompt

>>> from quo.completion import WordCompleter

>>>

>>> example = WordCompleter(['USA', 'UK', 'Canada', 'Kenya']

>>>

>>> session = Prompt(completer=example

>>> session.prompt('Which country are you from?: '
Which country are you from?:

USA
UK
Canada
Kenya

_images/styled3.png
Terminal - python /home/gerry/git/quo.
from quo.rule import Rule

_images/toolbar.png
EE erminal - python toolbarpy /home/gerry/git/quolexamples/progress

- progress
atey ——————— left: eta (00:03)

Press CTRL+C to quit

_images/styled1.png
| Styled

Do you want to continue?
Press ENTER to quit.

B ok

_images/styled2.png
What would you like in your breakfast ?

[Eges
. Bacon
| 20 Croissants

. The breakfast of the day

« [0k I»fll«[Cancel]»|

nav.xhtml

 Table of Contents

 		
 Quo

 		
 Introduction

 		
 Requirements

 		
 Installation

 		
 Quick Start

 		
 Printing (and using) formatted text

 		
 Formatted text

 		
 echo

 		
 Printing to Standard error using echo

 		
 print

 		
 Bars

 		
 Console API

 		
 Attributes

 		
 Bell

 		
 Encoding

 		
 File Opening

 		
 Launching Applications

 		
 Launching Text Editors

 		
 Pager

 		
 Spin

 		
 Terminal size

 		
 Dialogs

 		
 Message Box

 		
 Input Box

 		
 Confirm Box

 		
 Choice Box

 		
 Radiolist Box

 		
 Check Box

 		
 Styling of dialogs

 		
 Styling reference sheet

 		
 Example

 		
 Parse

 		
 How to name Optional Arguments

 		
 The basics

 		
 Short options

 		
 Positional Arguments

 		
 Combining Positional and Optional arguments

 		
 Grouping conflicting optional arguments

 		
 Progress bars 📊

 		
 Simple progress bar

 		
 Autohide progressbar

 		
 Adding a title and label

 		
 Adding a toolbar

 		
 Spinner themes

 		
 Multiple parallel tasks

 		
 Nested progressbars

 		
 Rainbow progress bar

 		
 Adding a key binder

 		
 Prompts

 		
 App Prompts

 		
 Input Validation

 		
 Integer Validator

 		
 Input Prompts using Prompt() class

 		
 Multiline Input

 		
 Hide Input

 		
 Using function quo.prompt()

 		
 Using class `quo.prompt.Prompt()

 		
 Confirmation Prompts

 		
 System prompt

 		
 Suspend prompt

 		
 Prompt bottom toolbar

 		
 Right prompt(rprompt)

 		
 Syntax highlighting

 		
 Placeholder text

 		
 Plain text placeholder

 		
 Formatted text placeholder

 		
 Colors

 		
 Plain text prompt

 		
 Formatted text prompt

 		
 Styled prompt

 		
 Coloring the prompt and the input

 		
 Completion

 		
 Auto suggestion

 		
 Autocompletion

 		
 Nested completion

 		
 Complete while typing

 		
 History

 		
 MemoryHistory

 		
 FileHistory

 		
 Adding custom key bindings

 		
 Conditional Key bindings

 		
 Toggle visibility of input

 		
 Mouse support

 		
 Line wrapping

 		
 Rule

 		
 Table

 		
 Printing tabular data

 		
 Table headers

 		
 Column Widths and Line Wrapping

 		
 Widgets

 		
 Frame

 		
 Box

 		
 Label

 		
 TextField

 		
 Other attributes

 		
 Button

 		
 Shadow

 		
 Utilities

 		
 Screen Clearing

 		
 Getting Characters from Terminal(getchar)

 		
 Exitting

 		
 Waiting for Key Press(pause)

 		
 Exception(Error) Handling

 		
 Where are Errors Handled?

 		
 Which Exceptions Exist?

 		
 Text User Interface (Full screen Command-line applications)

 		
 A simple application

 		
 The layout

 		
 container

 		
 A layered layout architecture

 		
 HSplit

 		
 VSplit

 		
 Key bindings

 		
 Global key bindings

 		
 Registering Key bindings

 		
 Window

 		
 Key binding 🗝️

 		
 List of special keys

 		
 Binding alt+something, option+something or meta+something

 		
 Wildcards

 		
 Attaching a Condition to key bindings

 		
 ConditionalKeyBindings: Disabling a set of key bindings

 		
 Merging key bindings

 		
 Eager

 		
 Asyncio coroutines

 		
 Timeouts

 		
 Recording macros

 		
 Creating new Vi text objects and operators

 		
 License📜

 		
 MIT License

 		
 Changelog

 		
 Added

 		
 Added

 		
 Added

 		
 Version 2023.3

 		
 Added

 		
 Fixed

 		
 Version 2023.2

 		
 Added

 		
 Version 2023.1

 		
 Added

 		
 Changed

 		
 Version 2022.9

 		
 Added

 		
 Changed

 		
 Version 2022.8.1

 		
 Changed

 		
 Version 2022.8

 		
 Added

 		
 Version 2022.7

 		
 Added

 		
 Version 2022.6.1

 		
 Version 2022.6

 		
 Version 2022.5.3

 		
 Version 2022.5.2

 		
 Added

 		
 Version 2022.5.1

 		
 Fixed

 		
 Version 2022.5

 		
 Added

 		
 Version 2022.4.5`

 		
 Added

 		
 Version 2022.4.4

 		
 Added

 		
 Version 2022.4.3

 		
 Added

 		
 Version 2022.4.2

 		
 Changed

 		
 Version 2022.4.1

 		
 Fixed

 		
 Version 2022.4

 		
 Added

 		
 Version 2022.3.5

 		
 Changed

 		
 Version 2022.3.4

 		
 Added

 		
 Version 2022.3.3

 		
 Changed

 		
 Version 2022.3.2

 		
 Added

 		
 Changed

 		
 Version 2022.3.1

 		
 Added

 		
 Version 2022.3

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Version 2022.2.2

 		
 Added

 		
 Fixed

 		
 Version 2022.2.1

 		
 Changed

 		
 Fixed

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Version 2022.1.6

 		
 Version 2022.1.5

 		
 Fixed

 		
 Version 2022.1

 		
 Changed

 		
 Fixed

 		
 Version 2021.7

 		
 Changed

 		
 Fixed

 		
 Version 2021.6

 		
 Added

 		
 Version 2021.5.5.2

 		
 Fixed

 		
 Version 2021.5.5

 		
 Added

 		
 Version 2021.4.5

 		
 Added

 		
 Version 2021.3.5

 		
 Added

 		
 Changed

 		
 Version 2021.2

 		
 Version 2021.1

 		
 Added

 		
 Version 2021.1.dev0

 		
 Appendix

 		
 ECHO ANSI COLORS

 		
 Available Syntax highlighters

_images/auto-suggestion.png
® Terminal

_images/blue-input.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/prompts

master) x
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.8] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.prompt import Prompt
>>>

>>> session = Prompt(fg="blue") #The input will be colored blue

>>> session.prompt ("<red>john</red><white>@</white><green>localhost</green><red>
:</red><cyan><u>/user/john</u></cyan><purple>$ </purple>")

johne :

_images/arrows.png
EE e ————

> progress x
4 —————————————————— left: eta (00:06)

_images/changelog.png
(CHANGELOG

_images/click-handlers.png
P-] X ~ A Terminal - python click-handlers.py /home/gerry/git/quo/examples/fullscreen

555$
555S
555S
555S
555S
555S
$55S
or “Up and Down™ keys to move focus $555555%

555555

«(Button 1) $$$$$5$$

$555555S

«(Button $555$355$

$555555S

«([utton $$55555$

$555555S

«(Button 4) $$$$$5$$

$555555S

«(Exit) $$$$$5$$
$555555S
$555S
555S
555S
555S
$555S
$555S
555S

_images/bottom-toolbar.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/prompts

> prompts x

Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux

Type "help”, "copyright", "credits" or "license" for more information
from quo.prompt import Prompt

session = Prompt()

session.prompt('>

, bottom_toolbar="<i>This is a</i><style bg='red'> Toolbar</style>")

_images/box-and-textfield.png
Terminal - python textfield+box.py /home/gerry/git/quo/examples/fuliscreen
[EERRREERRUENN [
RERRRERRRNER [REEN
RERRRERRRNER [
NEESRRRRRTaN ! [RERRRTERN
world!! T
[
e
[
[REEN
[
e
11

_images/default.png
B x Terminal - python /home/gerry/git/quo

master) x
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.8] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.bar import Bar
>>>
>>> bar = Bar("I am a bar"
>>>
>>> bar.draw()

=

_images/colored-title-and-label.png
B x Terminal - python colored-title-and-label.py /home/gerry/git/quo/examples/progress

> progress ol

Downtoading
H 25. 1

——————————————————— 201/800 eta (00:06)

_images/custom-completion.png
Type a color:

_images/dots3.png
B x Terminal - python dots3.py /home/gerry/git/quo/examples/progress

progress git:() python dots3.py
t —_——————————————————————— left: eta (00:06)

_images/example1a.png
B e P e XK
rootacheckmate python examplel.py --help
usage: examplel.py [-h]

options:

-h, --help show this help message and exit
rootachecknate

_images/default1.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/rule

> rule x
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.rule import Rule

>>> rule = Rule()

>>> rule.draw()

>>> I

_images/default2.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/table
table
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.6] on linux

Type "help”, "copyright", "credits" or "license" for more information.
>>> from quo.table import Table

>>>
>>> data = [
["Name", "Gender", "Age"],
["Alice", "F", 24],
["Bob", "M", 19],
[
1

"Dave", "M", 24]

table = Table(data)
table.print()

_images/example2b.png
|- . root@checkmate:/home/gerrylgit/quolexamples

rootacheckmate 5 python example2.py

usage: example2.py [-h] [
options:
-h, --help show this help message and exit

--verbosity VERBOSITY

Increase the verbosity

rootacheckmate it/quo/example:

_images/example2c.png
|- . root@checkmate:/home/gerrylgit/quolexamples

L 3N
rootachecknate

python example2.py --verbosity
usage: example2.py [-h] [--verbosity VERBOSITY]

example2.py: error: argument --verbosity: X expected one argument
% # rootachecknate

_images/example1b.png
root@checkmate:/home/gerrylgitiquolexamples.

L 3N
rootachecknate

python examplel.py --verbose

usage: examplel.py [-h]

examplel.py: error: X unrecognized arguments:
% # rootachecknate

_images/example2a.png
[P root@checkmate:homelgerry/gitiquolexamples oo e

rootachecknate python example2.py --verbosity 2

Verbosity turned on
rootachecknate

_images/giphy.gif

_images/gray-placeholder.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/prompts

> prompts x

Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux

Type "help”, "copyright", "credits" or "license" for more information
from quo.prompt import Prompt

session = Prompt()

session.prompt("What is your name?: ", placeholder='<gray>(please type something)</gray>'
What is your name?: [lplease type something

_static/quo.png

_images/help-text.png
[HELP PAGE]

Usage: example.py [HELP PAGE]

This script prints hello NAME COUNT times.

Apps:
--count INTEGER number of greetings
--name TEXT The person to greet
-h, --help Check the documentation for

more mitigation steps.

Check the documentation.

https://quo.rtfd.io

_images/highlighthtml.png
rootdcheckmate
Python 3.10.5 (main, Jun 8 2022, 09:26:22) [6CC 11.3.0] on linux
Type "help”, "copyright, "credits" or "license” for more information
>>> from quo.highlight import Highlight
>>> from quo.prompt import Prompt
>>> session = Prompt(highlighter=Highlight .html)
>>> session.prompt("Enter HTHL")

Enter HTML< - o>World</! - >

_images/grid.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/table

table x
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.6] on linux

Type "help”, "copyright", "credits" or "license" for more information.
>>> from quo.table import Table
>>>
>>>
"Name", "Gender", "Age"],
"Alice", "F", 24],
"Bob”, "M", 19],
"Dave”, "M", 24]

> table = Table(data)

table.print (theme="grid")

_images/hamburger.png
EE S ———

progress git:() python hamburger.py
—_—————————————————————— left: eta (00:06)

_images/label-fullscreen.png
[% Terminal - python /home/gerry/git/quo/docs/images/prompt

Hello, World

_images/label.png
B x v A~ Terminal - python /home/gerry/git/quo/docs/images/prompt.

> prompt
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo import container

>>> from quo.widget import Label

>>>

>>> content = Label("Hello, World", style="fg:black bg:red"

>>>

>>> container(content, bind=False

>>> I

_images/highlightpython.png
rootdcheckmate
Python 3.10.5 (main, Jun 8 2022, 09:26:22) [6CC 11.3.0] on linux
Type "help”, "copyright, "credits" or "license” for more information
>>> from quo.highlight import Highlight
>>> from quo.prompt import Prompt
>>> session = Prompt(highlighter=Highlight.python)
>>> session.prompt("Enter Python code”)

Enter Python code 1iori ., . is awesome]]

_images/input.png
Terminal - time pyth

inputbox.py /h

Igerry/git/quorexamples/dial

_images/many-parallel-tasks.png
Terminal - python many-parallel-tasks.py /home/gerry/git/quo/examples/progress

> progress
Example of many parallel tasks.

] clear [Control-C] abort

_static/file.png

_static/plus.png

_static/minus.png

_images/green.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/table

master
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.8] on linux
Type "help”, "copyright", "credits" or "license" for more information.
>>> from quo.table import Table
>>>
>>> data = [
["Name", "Gender", "Age"],
["Alice", "F", 24],
["Bob", "M", 19],
["Dave”, "M", 24]
. 1
table = Table(data)
table.print(fg="green")

_images/multiline.png
Terminal - time python multiline-inputbox.py /home/gerry/git/quo/examples/dialogs

PromptBox shenanigans |

What Country are you from?:

)» «(Cancel)»

_images/multiline1.png
Ex v A Terminal - python /home/gerry/git/quo/docs

> docs x
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.rule import Rule

= Rule(lines=4)

>>> rule.draw()

_images/multiline-bottom-toolbar.png
B X Terminal - python /home/gerry/git/quolexamples/prompts
prompts gi) x python
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [G6CC 11.3.0] on linux

Type "help”, "copyright”, "credits” or "license" for more information
[>>> from quo.prompt import Prompt

sion = Prompt()
session.prompt("Say something: ", bottom toolba
something: i

his is\na multiline toolba

ay

his is
la multiline toolbar

_images/multiline-input.png
[multiline input> this is some
input which
consists of

multiple lines.[]

_images/prompt.png
O Y
'$ python prompt.py

Give me some input: Hi there!
You said: Hi there!

$

_images/promptclasspassword.png
rootdcheckmate
Python 3.10.5 (main, Jun
Type "help”, "copyright”, "credits”
>>> from quo.prompt import Prompt
>>> session = Prompt(hide=True)
>>> session.prompt(“Password: ")
Password:

8 2022, 09:26:22) [GCC 11.3.0] on linux

or "license" for more information.

_images/nested.png
EE erminal - python nested-progress-bars.py /home/gerry/git/quo/examples/progress

progress git:() python nested-progress-bars.py
Nested progress bars
Main task ———————————————————————————— 0/ 6 left: eta (?:22:77)
Subtask = —191/200 left: eta (00:00)

L] clear [Control-C] abort

_images/number-validator.png
. o Terminal

Give a number: hello

This input contains non-numeric characters

_images/message.png
Terminal - python messagebox.py /home/gerry/git/quor

mples/dialc

Do you want to contin
ENTER to quit

_images/multicolored.png
Terminal - python /home/gerry/git/quo/examples/rule

from quo.rule import Rule
rule = Rule()
rule.draw(multicolored=True)

_images/right.png
B x Terminal - python /home/gerry/git/quo
master) x
2 2022, 18:53:38) [GCC 11.3.0] on linux
"license" for more information

Python 3.10.6 (main, Nov 2 2022
Type "help", "copyright"

“credits" or

>>> from quo.bar import Bar
("I am right aligned")

I am right aligned|

_images/right1.png
B x v A~ Terminal - python /home/gerry/git/quo/docs/images/tables

master

Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.8] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.table import Table
>>>
>>> data = [

["Name", "Gender", "Age"]

["Alice", "F", 24],

["Bob", "M", 19],

["Dave”, "M", 24]

1

table = Table(data)
table.print(align="right")

_images/red-and-green-rprompt.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/prompts

prompts git: () ¥ python
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [G6CC 11.3.0] on linux
Type "help”, "copyright", "credits" or "license" for more information
[>>> from quo.prompt import Prompt
>>>
>>> session = Prompt()

>>> session.prompt(">> ", rprompt='<style fg="red" bg="green">Quo rprompt</styles>'

-

_images/red-prompt.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/prompts

> prompts x
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.prompt import Prompt

>>>

>>> session = Prompt(fg="red")

>>> session.prompt("Type something: ")

_images/styled.png
Ex v A Terminal - python /home/gerry/gi/quo

quo git:() python
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [G6CC 11.3.0] on linux
Type "help”, "copyright", "credits" or "license" for more information
>>> from quo.bar import Bar
>>>
>>> bar = Bar("I am a styled bar")
>>>
>>> bar.draw(fg="blue", bg="yellow")

T am a styled bar

>>> 1

_images/skyblue.png
B - . python L 3N
L pthen7o]
rootachecknate SEg) python

Python 3.10.5 (main, Jun 8 2022, 09:26:22) [6CC 11.3.0] on linux
Type "help”, "copyright”, "credits” or "license" for more information
>>> from quo import print
>>> print("<skyblue>This is sky blue</skyblue>")
This is sky blue

> 1

_images/styled-prompt.png
B x v A~ Terminal - python /home/gerry/git/quo/examples/prompts

master) x
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.6] on linux

Type "help”, "copyright", "credits" or "license" for more information.
from quo.prompt import Prompt

session = Prompt()

session.prompt ("<red>john</red><white>@</white><green>localhost</green><red>

</red><cyan><u>/user/john</u></cyan><purple>$ </purple>")
johne . $

_images/radiolist1.png
Terminal - python radioli

py home/gerry/git/quo/examples/dia

_images/rainbow.png
EE L Y —

progress git:() python rainbow.py
Rainbow Progressbar

Downloading... » 70.0 left: eta (00:00)

_images/quo.png

